Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(16): 18051-18061, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38680312

RESUMEN

Sodium sulfate decahydrate (SSD) is a low-cost phase-change material (PCM) for thermal energy storage applications that offers substantial melting enthalpy and a suitable temperature range for near-ambient applications. However, SSD's consistent phase separation with decreased melting enthalpy over repeated thermal cycles limits its application as a PCM. Sulfonated polyelectrolytes, such as dextran sulfate sodium (DSS), have shown great effectiveness in preventing phase separation in SSD. However, there is limited understanding of the stabilization mechanism of SSD by DSS at the atomic length and time scales. In this work, we investigate SSD stabilization via DSS using neutron scattering and molecular dynamics (MD) simulations. Neutron scattering and pair distribution function analysis revealed the structural evolution of the PCM samples below and above the phase change temperatures. MD simulations revealed that water from the hydrate structure migrates from the hydrate crystal to the SSD-DSS interfacial region upon melting. The water is stabilized at this interface by aggregation around the hydrophilic sulfonic acid groups attached to the backbone of the polyelectrolyte. This architecture retains water near the dehydrated sodium sulfate, preventing phase separation and, consequently, stabilizing SSD rehydration. This work provides atomistic insight into selecting and designing stable and high-performance PCMs for heating and cooling applications in building technologies.

2.
Commun Chem ; 4(1): 6, 2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36697523

RESUMEN

A vast source of methane is found in gas hydrate deposits, which form naturally dispersed throughout ocean sediments and arctic permafrost. Methane may be obtained from hydrates by exchange with hydrocarbon byproduct carbon dioxide. It is imperative for the development of safe methane extraction and carbon dioxide sequestration to understand how methane and carbon dioxide co-occupy the same hydrate structure. Pair distribution functions (PDFs) provide atomic-scale structural insight into intermolecular interactions in methane and carbon dioxide hydrates. We present experimental neutron PDFs of methane, carbon dioxide and mixed methane-carbon dioxide hydrates at 10 K analyzed with complementing classical molecular dynamics simulations and Reverse Monte Carlo fitting. Mixed hydrate, which forms during the exchange process, is more locally disordered than methane or carbon dioxide hydrates. The behavior of mixed gas species cannot be interpolated from properties of pure compounds, and PDF measurements provide important understanding of how the guest composition impacts overall order in the hydrate structure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA