RESUMEN
BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has impacted healthcare systems worldwide. Multiple reports on thromboembolic complications related to COVID-19 have been published, and researchers have described that people with COVID-19 are at high risk for developing venous thromboembolism (VTE). Anticoagulants have been used as pharmacological interventions to prevent arterial and venous thrombosis, and their use in the outpatient setting could potentially reduce the prevalence of vascular thrombosis and associated mortality in people with COVID-19. However, even lower doses used for a prophylactic purpose may result in adverse events such as bleeding. It is important to consider the evidence for anticoagulant use in non-hospitalised people with COVID-19. OBJECTIVES: To evaluate the benefits and harms of prophylactic anticoagulants versus active comparators, placebo or no intervention, or non-pharmacological interventions in non-hospitalised people with COVID-19. SEARCH METHODS: We used standard, extensive Cochrane search methods. The latest search date was 18 April 2022. SELECTION CRITERIA: We included randomised controlled trials (RCTs) comparing prophylactic anticoagulants with placebo or no treatment, another active comparator, or non-pharmacological interventions in non-hospitalised people with COVID-19. We included studies that compared anticoagulants with a different dose of the same anticoagulant. We excluded studies with a duration of under two weeks. DATA COLLECTION AND ANALYSIS: We used standard Cochrane methodological procedures. Our primary outcomes were all-cause mortality, VTE (deep vein thrombosis (DVT) or pulmonary embolism (PE)), and major bleeding. Our secondary outcomes were DVT, PE, need for hospitalisation, minor bleeding, adverse events, and quality of life. We used GRADE to assess the certainty of the evidence. MAIN RESULTS: We included five RCTs with up to 90 days of follow-up (short term). Data were available for meta-analysis from 1777 participants. Anticoagulant compared to placebo or no treatment Five studies compared anticoagulants with placebo or no treatment and provided data for three of our outcomes of interest (all-cause mortality, major bleeding, and adverse events). The evidence suggests that prophylactic anticoagulants may lead to little or no difference in all-cause mortality (risk ratio (RR) 0.36, 95% confidence interval (CI) 0.04 to 3.61; 5 studies; 1777 participants; low-certainty evidence) and probably reduce VTE from 3% in the placebo group to 1% in the anticoagulant group (RR 0.36, 95% CI 0.16 to 0.85; 4 studies; 1259 participants; number needed to treat for an additional beneficial outcome (NNTB) = 50; moderate-certainty evidence). There may be little to no difference in major bleeding (RR 0.36, 95% CI 0.01 to 8.78; 5 studies; 1777 participants; low-certainty evidence). Anticoagulants probably result in little or no difference in DVT (RR 1.02, 95% CI 0.30 to 3.46; 3 studies; 1009 participants; moderate-certainty evidence), but probably reduce the risk of PE from 2.7% in the placebo group to 0.7% in the anticoagulant group (RR 0.25, 95% CI 0.08 to 0.79; 3 studies; 1009 participants; NNTB 50; moderate-certainty evidence). Anticoagulants probably lead to little or no difference in reducing hospitalisation (RR 1.01, 95% CI 0.59 to 1.75; 4 studies; 1459 participants; moderate-certainty evidence) and may lead to little or no difference in adverse events (minor bleeding, RR 2.46, 95% CI 0.90 to 6.72; 5 studies, 1777 participants; low-certainty evidence). Anticoagulant compared to a different dose of the same anticoagulant One study compared anticoagulant (higher-dose apixaban) with a different (standard) dose of the same anticoagulant and reported five relevant outcomes. No cases of all-cause mortality, VTE, or major bleeding occurred in either group during the 45-day follow-up (moderate-certainty evidence). Higher-dose apixaban compared to standard-dose apixaban may lead to little or no difference in reducing the need for hospitalisation (RR 1.89, 95% CI 0.17 to 20.58; 1 study; 278 participants; low-certainty evidence) or in the number of adverse events (minor bleeding, RR 0.47, 95% CI 0.09 to 2.54; 1 study; 278 participants; low-certainty evidence). Anticoagulant compared to antiplatelet agent One study compared anticoagulant (apixaban) with antiplatelet agent (aspirin) and reported five relevant outcomes. No cases of all-cause mortality or major bleeding occurred during the 45-day follow-up (moderate-certainty evidence). Apixaban may lead to little or no difference in VTE (RR 0.36, 95% CI 0.01 to 8.65; 1 study; 279 participants; low-certainty evidence), need for hospitalisation (RR 3.20, 95% CI 0.13 to 77.85; 1 study; 279 participants; low-certainty evidence), or adverse events (minor bleeding, RR 2.13, 95% CI 0.40 to 11.46; 1 study; 279 participants; low-certainty evidence). No included studies reported on quality of life or investigated anticoagulants compared to a different anticoagulant, or anticoagulants compared to non-pharmacological interventions. AUTHORS' CONCLUSIONS: We found low- to moderate-certainty evidence from five RCTs that prophylactic anticoagulants result in little or no difference in major bleeding, DVT, need for hospitalisation, or adverse events when compared with placebo or no treatment in non-hospitalised people with COVID-19. Low-certainty evidence indicates that prophylactic anticoagulants may result in little or no difference in all-cause mortality when compared with placebo or no treatment, but moderate-certainty evidence indicates that prophylactic anticoagulants probably reduce the incidence of VTE and PE. Low-certainty evidence suggests that comparing different doses of the same prophylactic anticoagulant may result in little or no difference in need for hospitalisation or adverse events. Prophylactic anticoagulants may result in little or no difference in risk of VTE, hospitalisation, or adverse events when compared with antiplatelet agents (low-certainty evidence). Given that there were only short-term data from one study, these results should be interpreted with caution. Additional trials of sufficient duration are needed to clearly determine any effect on clinical outcomes.
Asunto(s)
COVID-19 , Embolia Pulmonar , Tromboembolia Venosa , Humanos , Anticoagulantes/efectos adversos , Inhibidores de Agregación Plaquetaria , Tromboembolia Venosa/prevención & control , Aspirina , Embolia Pulmonar/prevención & controlRESUMEN
BACKGROUND: Mineralocorticoid receptor antagonists (MRAs) are widely used for chronic central serous chorioretinopathy (cCSCR), but their effectiveness remains unclear. This research was conducted to evaluate the efficacy of this drugs for cCSCR. METHODS: This is a review of randomized clinical trials (RCT) comparing MRAs to placebo in adults with cCSCR, using the effects of MRAs on best-corrected visual acuity (BCVA) and adverse events as primary outcomes and the effects of MRAs on anatomical parameters as secondary outcomes: central subfield thickness (CST), subretinal fluid height (SFH) and central choroidal thickness (CCT). Our all-language online search included Medline (via PubMed), Central, Embase, Lilacs, Ibecs, and RCT registers platforms, as late as May 2021. We used the Cochrane risk-of-bias tool (version 2) to assess the methodological quality of each study and synthesized the results in meta-analyses using a random-effects model. RESULTS: The search identified 302 records, five of which were eligible, totaling 225 cCSCR patients (aged 45-62 years; M/F ratio 3.1:1) treated for 1 to 12 months with spironolactone (50 mg/day) or eplerenone (50 mg/day) vs. placebo. Moderate-certainty evidence suggests MRAs result in little to no improvement in BCVA compared to placebo (SMD 0.22; 95% CI - 0.04 to 0.48; studies = 5; comparisons = 6; participants = 218; I2 = 0%). Very low-certainty evidence suggests that, when compared to placebo, MRAs have a very uncertain impact on adverse effects (no meta-analysis was performed), and CST (MD 18.1; 95% CI - 113.04 to 76.84; participants = 145; studies = 2; I2 = 68%). MRAs also result in little to no difference in SFH (SMD - 0.35; 95% CI - 0.95 to 0.26; studies = 5; comparisons = 6; participants = 221; I2 = 76%; moderate certainty) and CCT (MD - 21.23; 95% CI - 64.69 to 22.24; participants = 206; studies = 4; comparisons = 5; I2 = 85%; low certainty). CONCLUSION: MRAs have little to no effect on BCVA. Evidence for adverse events and CST is very uncertain. MRAs also have little to no effect on SFH and CCT. These findings should be considered when prescribing MRAs for cCSCR. This research was previous registration in the PROSPERO platform (CRD42020182601).
RESUMEN
BACKGROUND: The primary manifestation of coronavirus disease 2019 (COVID-19) is respiratory insufficiency that can also be related to diffuse pulmonary microthrombosis and thromboembolic events, such as pulmonary embolism, deep vein thrombosis, or arterial thrombosis. People with COVID-19 who develop thromboembolism have a worse prognosis. Anticoagulants such as heparinoids (heparins or pentasaccharides), vitamin K antagonists and direct anticoagulants are used for the prevention and treatment of venous or arterial thromboembolism. Besides their anticoagulant properties, heparinoids have an additional anti-inflammatory potential. However, the benefit of anticoagulants for people with COVID-19 is still under debate. OBJECTIVES: To assess the benefits and harms of anticoagulants versus active comparator, placebo or no intervention in people hospitalised with COVID-19. SEARCH METHODS: We searched the CENTRAL, MEDLINE, Embase, LILACS and IBECS databases, the Cochrane COVID-19 Study Register and medRxiv preprint database from their inception to 14 April 2021. We also checked the reference lists of any relevant systematic reviews identified, and contacted specialists in the field for additional references to trials. SELECTION CRITERIA: Eligible studies were randomised controlled trials (RCTs), quasi-RCTs, cluster-RCTs and cohort studies that compared prophylactic anticoagulants versus active comparator, placebo or no intervention for the management of people hospitalised with COVID-19. We excluded studies without a comparator group and with a retrospective design (all previously included studies) as we were able to include better study designs. Primary outcomes were all-cause mortality and necessity for additional respiratory support. Secondary outcomes were mortality related to COVID-19, deep vein thrombosis, pulmonary embolism, major bleeding, adverse events, length of hospital stay and quality of life. DATA COLLECTION AND ANALYSIS: We used standard Cochrane methodological procedures. We used Cochrane RoB 1 to assess the risk of bias for RCTs, ROBINS-I to assess risk of bias for non-randomised studies (NRS) and GRADE to assess the certainty of evidence. We meta-analysed data when appropriate. MAIN RESULTS: We included seven studies (16,185 participants) with participants hospitalised with COVID-19, in either intensive care units, hospital wards or emergency departments. Studies were from Brazil (2), Iran (1), Italy (1), and the USA (1), and two involved more than country. The mean age of participants was 55 to 68 years and the follow-up period ranged from 15 to 90 days. The studies assessed the effects of heparinoids, direct anticoagulants or vitamin K antagonists, and reported sparse data or did not report some of our outcomes of interest: necessity for additional respiratory support, mortality related to COVID-19, and quality of life. Higher-dose versus lower-dose anticoagulants (4 RCTs, 4647 participants) Higher-dose anticoagulants result in little or no difference in all-cause mortality (risk ratio (RR) 1.03, 95% CI 0.92 to 1.16, 4489 participants; 4 RCTs) and increase minor bleeding (RR 3.28, 95% CI 1.75 to 6.14, 1196 participants; 3 RCTs) compared to lower-dose anticoagulants up to 30 days (high-certainty evidence). Higher-dose anticoagulants probably reduce pulmonary embolism (RR 0.46, 95% CI 0.31 to 0.70, 4360 participants; 4 RCTs), and slightly increase major bleeding (RR 1.78, 95% CI 1.13 to 2.80, 4400 participants; 4 RCTs) compared to lower-dose anticoagulants up to 30 days (moderate-certainty evidence). Higher-dose anticoagulants may result in little or no difference in deep vein thrombosis (RR 1.08, 95% CI 0.57 to 2.03, 3422 participants; 4 RCTs), stroke (RR 0.91, 95% CI 0.40 to 2.03, 4349 participants; 3 RCTs), major adverse limb events (RR 0.33, 95% CI 0.01 to 7.99, 1176 participants; 2 RCTs), myocardial infarction (RR 0.86, 95% CI 0.48 to 1.55, 4349 participants; 3 RCTs), atrial fibrillation (RR 0.35, 95% CI 0.07 to 1.70, 562 participants; 1 study), or thrombocytopenia (RR 0.94, 95% CI 0.71 to 1.24, 2789 participants; 2 RCTs) compared to lower-dose anticoagulants up to 30 days (low-certainty evidence). It is unclear whether higher-dose anticoagulants have any effect on necessity for additional respiratory support, mortality related to COVID-19, and quality of life (very low-certainty evidence or no data). Anticoagulants versus no treatment (3 prospective NRS, 11,538 participants) Anticoagulants may reduce all-cause mortality but the evidence is very uncertain due to two study results being at critical and serious risk of bias (RR 0.64, 95% CI 0.55 to 0.74, 8395 participants; 3 NRS; very low-certainty evidence). It is uncertain if anticoagulants have any effect on necessity for additional respiratory support, mortality related to COVID-19, deep vein thrombosis, pulmonary embolism, major bleeding, stroke, myocardial infarction and quality of life (very low-certainty evidence or no data). Ongoing studies We found 62 ongoing studies in hospital settings (60 RCTs, 35,470 participants; 2 prospective NRS, 120 participants) in 20 different countries. Thirty-five ongoing studies plan to report mortality and 26 plan to report necessity for additional respiratory support. We expect 58 studies to be completed in December 2021, and four in July 2022. From 60 RCTs, 28 are comparing different doses of anticoagulants, 24 are comparing anticoagulants versus no anticoagulants, seven are comparing different types of anticoagulants, and one did not report detail of the comparator group. AUTHORS' CONCLUSIONS: When compared to a lower-dose regimen, higher-dose anticoagulants result in little to no difference in all-cause mortality and increase minor bleeding in people hospitalised with COVID-19 up to 30 days. Higher-dose anticoagulants possibly reduce pulmonary embolism, slightly increase major bleeding, may result in little to no difference in hospitalisation time, and may result in little to no difference in deep vein thrombosis, stroke, major adverse limb events, myocardial infarction, atrial fibrillation, or thrombocytopenia. Compared with no treatment, anticoagulants may reduce all-cause mortality but the evidence comes from non-randomised studies and is very uncertain. It is unclear whether anticoagulants have any effect on the remaining outcomes compared to no anticoagulants (very low-certainty evidence or no data). Although we are very confident that new RCTs will not change the effects of different doses of anticoagulants on mortality and minor bleeding, high-quality RCTs are still needed, mainly for the other primary outcome (necessity for additional respiratory support), the comparison with no anticoagulation, when comparing the types of anticoagulants and giving anticoagulants for a prolonged period of time.
Asunto(s)
COVID-19 , Tromboembolia , Anciano , Anticoagulantes/efectos adversos , COVID-19/complicaciones , Heparina/efectos adversos , Humanos , Persona de Mediana Edad , SARS-CoV-2RESUMEN
OBJECTIVE: To assess the effects of bilingualism compared to monolingualism on the clinical manifestation of Alzheimer's disease. METHODS: We searched the databases: MEDLINE, The Cochrane Central Register of Controlled Trials, Embase and LILACS, and searched by hand and in gray literature for studies published before September 2019. The quality of included studies was assessed using the Newcastle-Ottawa Scale. Two reviewers independently searched for studies, extracted data, and performed the quality assessment. RESULTS: Eight studies were included in this review. Data from meta-analyses suggest that bilingual individuals with Alzheimer's disease exhibit symptoms (694 participants; mean difference (MD) (4.05 years; 95% CI: 1.87-6.22 and are diagnosed later (1012 participants; MD 2.0 years; 95% CI: 0.08-3.92) than monolingual participants. CONCLUSION: Bilingualism may delay the manifestation of symptoms and diagnosis of Alzheimer's disease. Further studies with more rigorous methodology are needed to improve the precision of the results.
Asunto(s)
Reserva Cognitiva , Enfermedad de Alzheimer , Metaanálisis , Multilingüismo , Revisión SistemáticaRESUMEN
OBJECTIVE: To assess the effects of bilingualism compared to monolingualism on the clinical manifestation of Alzheimer's disease. METHODS: We searched the databases: MEDLINE, The Cochrane Central Register of Controlled Trials, Embase and LILACS, and searched by hand and in gray literature for studies published before September 2019. The quality of included studies was assessed using the Newcastle-Ottawa Scale. Two reviewers independently searched for studies, extracted data, and performed the quality assessment. RESULTS: Eight studies were included in this review. Data from meta-analyses suggest that bilingual individuals with Alzheimer's disease exhibit symptoms (694 participants; mean difference (MD) (4.05 years; 95% CI: 1.87-6.22 and are diagnosed later (1012 participants; MD 2.0 years; 95% CI: 0.08-3.92) than monolingual participants. CONCLUSION: Bilingualism may delay the manifestation of symptoms and diagnosis of Alzheimer's disease. Further studies with more rigorous methodology are needed to improve the precision of the results.