Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38396658

RESUMEN

Psychotropic drugs and benzodiazepines are nowadays among the primary substances of abuse. This results in a large and constant release into aquatic environments where they have potentially harmful effects on non-target organisms and, eventually, human health. In the last decades, evidence has been collected on the possible interference of benzodiazepines with reproductive processes, but data are few and incomplete. In this study, the possible negative influence of delorazepam on fertilization and embryo development has been tested in Paracentrotus lividus, a key model organism in studies of reproduction and embryonic development. Sperm, eggs, or fertilized eggs have been exposed to delorazepam at three concentrations: 1 µg/L (environmentally realistic), 5 µg/L, and 10 µg/L. Results indicate that delorazepam reduces the fertilizing capacity of male and female gametes and interferes with fertilization and embryo development. Exposure causes anatomical anomalies in plutei, accelerates/delays development, and alters the presence and distribution of glycoconjugates such as N-Acetyl-glucosamine, α-linked fucose, and α-linked mannose in both morulae and plutei. These results should attract attention to the reproductive fitness of aquatic species exposed to benzodiazepines and pave the way for further investigation of the effects they may exert on human fertility. The presence of benzodiazepines in the aquatic environment raises concerns about the reproductive well-being of aquatic species. Additionally, it prompts worries regarding potential impacts on human fertility due to the excessive use of anxiolytics.


Asunto(s)
Paracentrotus , Masculino , Femenino , Animales , Humanos , Benzodiazepinas/efectos adversos , Semen , Fertilidad , Fertilización , Embrión no Mamífero
2.
Mar Drugs ; 16(8)2018 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-30042358

RESUMEN

Astaxanthin is a carotenoid with powerful antioxidant and anti-inflammatory activity produced by several freshwater and marine microorganisms, including bacteria, yeast, fungi, and microalgae. Due to its deep red-orange color it confers a reddish hue to the flesh of salmon, shrimps, lobsters, and crayfish that feed on astaxanthin-producing organisms, which helps protect their immune system and increase their fertility. From the nutritional point of view, astaxanthin is considered one of the strongest antioxidants in nature, due to its high scavenging potential of free radicals in the human body. Recently, astaxanthin is also receiving attention for its effect on the prevention or co-treatment of neurological pathologies, including Alzheimer and Parkinson diseases. In this review, we focus on the neuroprotective properties of astaxanthin and explore the underlying mechanisms to counteract neurological diseases, mainly based on its capability to cross the blood-brain barrier and its oxidative, anti-inflammatory, and anti-apoptotic properties.


Asunto(s)
Organismos Acuáticos , Enfermedades Neurodegenerativas/prevención & control , Fármacos Neuroprotectores/farmacología , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Apoptosis/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Encéfalo/irrigación sanguínea , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Depuradores de Radicales Libres/farmacología , Depuradores de Radicales Libres/uso terapéutico , Radicales Libres/metabolismo , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Oxidación-Reducción/efectos de los fármacos , Xantófilas/farmacología , Xantófilas/uso terapéutico
3.
Mar Drugs ; 16(6)2018 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-29843412

RESUMEN

The carotenoid astaxanthin has strong antioxidant properties with beneficial effects for various degenerative diseases. This carotenoid is produced by some microalgae species when cultivated in particular conditions, and, interestingly, it is a predominant carotenoid in aquatic animals throughout a broad range of taxa. Recently, astaxanthin was detected in the eggs of the sea urchin Arbacia lixula in relevant concentrations when this organism was maintained in culture. These results have paved the way for deeper research into astaxanthin production by this species, particularly in regards to how astaxanthin production can be modulated by diet. Results showed that the highest content of astaxanthin in eggs was observed in sea urchins fed on a diet enriched with Spirulina platensis. This result was confirmed by the high antioxidant activity recorded in the egg extracts of these animals. Our results suggest that (i) the sea urchin A. lixula is able to synthesize astaxanthin from precursors obtained from food, and (ii) it is possible to modulate the astaxanthin accumulation in sea urchin eggs by modifying the proportions of different food ingredients provided in their diet. This study demonstrates the large potential of sea urchin cultivation for the eco-sustainable production of healthy supplements for nutraceutical applications.


Asunto(s)
Arbacia/metabolismo , Biotecnología/métodos , Suplementos Dietéticos , Spirulina , Animales , Xantófilas/biosíntesis
4.
Mar Drugs ; 15(6)2017 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-28635649

RESUMEN

Several echinoderms, including sea urchins, are valuable sources of bioactive compounds but their nutraceutical potential is largely unexplored. In fact, the gonads of some sea urchin species contain antioxidants including carotenoids and polyhydroxylated naphthoquinones (PHNQ's), such as echinochrome A. Astaxanthin is known to have particular bioactivity for the prevention of neurodegenerative diseases. This carotenoid is produced by microalgae, while several marine invertebrates can bioaccumulate or synthetize it from metabolic precursors. We determined the carotenoid content and analyzed the bioactivity potential of non-harvested Atlantic-Mediterranean sea urchin Arbacia lixula. The comparison of methanol crude extracts obtained from eggs of farmed and wild specimens revealed a higher bioactivity in farmed individuals fed with a customized fodder. HPLC-analysis revealed a high concentration of astaxanthin (27.0 µg/mg), which was the only pigment observed. This study highlights the potential of farmed A. lixula as a new source of the active stereoisomer of astaxanthin.


Asunto(s)
Arbacia/química , Erizos de Mar/química , Alimentación Animal , Animales , Carotenoides/química , Gónadas/química , Xantófilas/química
5.
Sci Total Environ ; 599-600: 9-13, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28460290

RESUMEN

In marine environment the release and the consequent sedimentation of ZnO NPs, mainly used in sunscreens, could provoke toxic effects in particular in grazer organisms, like sea urchins. In this work, a first evaluation of DNA and cellular effects on adult sea urchins Paracentrotus lividus exposed through the diet to different sizes (100 and 14nm) ZnO NPs, was performed. Moreover, the consequent impact upon offspring quality was evaluated. Preliminarily results showed that the assumption of food containing ZnO NPs 100nm provoked in adult echinoids damages to immune cells (33% of damaged nucleus) and transmissible effects to offspring (75.5% of malformed larvae). Instead food with ZnO NPs 14nm provoked 64% of damaged nucleus in immune cells and 84.7% of malformed larvae.


Asunto(s)
Exposición a Riesgos Ambientales/efectos adversos , Nanopartículas del Metal/toxicidad , Paracentrotus/efectos de los fármacos , Paracentrotus/inmunología , Óxido de Zinc/toxicidad , Animales , Femenino , Genitales/efectos de los fármacos , Sistema Inmunológico/efectos de los fármacos , Larva/efectos de los fármacos , Masculino , Reproducción/efectos de los fármacos
6.
Sci Rep ; 6: 26086, 2016 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-27192939

RESUMEN

The health of the sea urchin Paracentrotus lividus, a key species in the Mediterranean Sea, is menaced by several pressures in coastal environments. Here, we aimed at assessing the reproductive ability of apparently healthy P. lividus population in a marine protected area affected by toxic blooms of Ostreospsis cf. ovata. Wide-ranging analyses were performed in animals collected prior to and during the bloom, as well as at several times thereafter, during the reproductive season. Adults showed a low fertilization rate, along with high nitric oxide (NO) levels in the gonads and the nitration of the major yolk protein toposome, which is an important player in sea urchin development. Serious developmental anomalies were observed in the progeny, which persist several months after the bloom. NO levels were high in the different developmental stages, which also showed variations in the transcription of several genes that were found to be directly or indirectly modulated by NO. These results highlight subtle but important reproductive flaws transmitted from the female gonads to the offspring with the NO involvement. Despite a recovery along time after the bloom, insidious damages can be envisaged in the local sea urchin population, with possible reverberation on the whole benthic system.


Asunto(s)
Floraciones de Algas Nocivas , Óxido Nítrico/análisis , Paracentrotus/efectos de los fármacos , Paracentrotus/fisiología , Animales , Mar Mediterráneo , Paracentrotus/química , Paracentrotus/crecimiento & desarrollo , Reproducción
7.
PLoS One ; 10(6): e0131815, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26125595

RESUMEN

Metal contamination represents one of the major sources of pollution in marine environments. In this study we investigated the short-term effects of ecologically relevant cadmium and manganese concentrations (10(-6) and 3.6 x 10(-5) M, respectively) on females of the sea urchin Paracentrotus lividus and their progeny, reared in the absence or presence of the metal. Cadmium is a well-known heavy metal, whereas manganese represents a potential emerging contaminant, resulting from an increased production of manganese-containing compounds. The effects of these agents were examined on both P. lividus adults and their offspring following reproductive state, morphology of embryos, nitric oxide (NO) production and differential gene expression. Here, we demonstrated that both metals differentially impaired the fertilization processes of the treated female sea urchins, causing modifications in the reproductive state and also affecting NO production in the ovaries. A detailed analysis of the progeny showed a high percentage of abnormal embryos, associated to an increase in the endogenous NO levels and variations in the transcriptional expression of several genes involved in stress response, skeletogenesis, detoxification, multi drug efflux processes and NO production. Moreover, we found significant differences in the progeny from females exposed to metals and reared in metal-containing sea water compared to embryos reared in non-contaminated sea water. Overall, these results greatly expanded previous studies on the toxic effects of metals on P. lividus and provided new insights into the molecular events induced in the progeny of sea urchins exposed to metals.


Asunto(s)
Cadmio/toxicidad , Embrión no Mamífero/anomalías , Manganeso/toxicidad , Exposición Materna/efectos adversos , Paracentrotus/efectos de los fármacos , Animales , Técnicas de Cultivo de Embriones , Femenino , Expresión Génica/efectos de los fármacos , Óxido Nítrico/biosíntesis , Paracentrotus/embriología , Reproducción/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad
8.
Genesis ; 53(1): 160-9, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25395385

RESUMEN

Historically, mutations have had a significant impact on the study of developmental processes and phenotypic evolution. Lesions in DNA are created by artificial methods or detected by natural genetic variation. Random mutations are then ascribed to genetic change by direct sequencing or positional cloning. Tunicate species of the ascidian genus Ciona represent nearly fully realized model systems in which gene function can be investigated in depth. Additionally, tunicates are valuable organisms for the study of naturally occurring mutations due to the capability to exploit genetic variation down to the molecular level. Here, we summarize the available information about how mutations are studied in ascidians with examples of insights that have resulted from these applications. We also describe notions and methodologies that might be useful for the implementation of easy and tight procedures for mutations studies in Ciona.


Asunto(s)
Ciona intestinalis/genética , Mutación , Animales , ADN/genética , Evolución Molecular , Técnicas Genéticas , Variación Genética , Fenotipo
9.
Cryobiology ; 68(1): 43-9, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24269530

RESUMEN

In cryopreservation procedures, the capacity to protect the cells from freezing and thawing processes is sensitive to the choice of the cryoprotective agent (CPA) and to its optimal concentration. The advancement of research on Tunicate model species has raised interest in liquid nitrogen cryopreservation for the storage and distribution of genetic resources. Ciona intestinalis (Linnè, 1767) consists of a complex of cryptic taxa that are central to several areas of investigation, from comparative genomics to invasive biology. Here we investigated how five CPAs, three chilling rates and two freezing rates influence semen cryopreservation in C. intestinalis sp. A. By using larval morphology and motility as endpoints, we estimated that long term semen storage requires 10% dimethyl sulfoxide as a protective agent, -1°C/min chilling rate (18°C to 5°C) and -13°C/min freezing rate (5°C to -80°C), followed by immersion in liquid nitrogen.


Asunto(s)
Ciona intestinalis/efectos de los fármacos , Criopreservación , Crioprotectores/farmacología , Dimetilsulfóxido/farmacología , Preservación de Semen/métodos , Espermatozoides/efectos de los fármacos , Animales , Ciona intestinalis/citología , Ciona intestinalis/fisiología , Conservación de los Recursos Naturales , Femenino , Fertilización In Vitro , Congelación , Larva/crecimiento & desarrollo , Masculino , Oocitos/citología , Oocitos/fisiología , Motilidad Espermática/efectos de los fármacos , Espermatozoides/citología , Espermatozoides/fisiología
10.
PLoS One ; 3(6): e2344, 2008 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-18523552

RESUMEN

BACKGROUND: The study of ascidians (Chordata, Tunicata) has made a considerable contribution to our understanding of the origin and evolution of basal chordates. To provide further information to support forward genetics in Ciona intestinalis, we used a combination of natural variation and neutral population genetics as an approach for the systematic identification of new mutations. In addition to the significance of developmental variation for phenotype-driven studies, this approach can encompass important implications in evolutionary and population biology. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report a preliminary survey for naturally occurring mutations in three geographically interconnected populations of C. intestinalis. The influence of historical, geographical and environmental factors on the distribution of abnormal phenotypes was assessed by means of 12 microsatellites. We identified 37 possible mutant loci with stereotyped defects in embryonic development that segregate in a way typical of recessive alleles. Local populations were found to differ in genetic organization and frequency distribution of phenotypic classes. CONCLUSIONS/SIGNIFICANCE: Natural genetic polymorphism of C. intestinalis constitutes a valuable source of phenotypes for studying embryonic development in ascidians. Correlating genetic structure and the occurrence of abnormal phenotypes is a crucial focus for understanding the selective forces that shape natural finite populations, and may provide insights of great importance into the evolutionary mechanisms that generate animal diversity.


Asunto(s)
Ciona intestinalis/fisiología , Variación Genética , Animales , Ciona intestinalis/genética , Genética de Población , Repeticiones de Microsatélite/genética , Mutación , Fenotipo
11.
Proc Natl Acad Sci U S A ; 104(22): 9364-9, 2007 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-17517633

RESUMEN

We applied independent species concepts to clarify the phylogeographic structure of the ascidian Ciona intestinalis, a powerful model system in chordate biology and for comparative genomic studies. Intensive research with this marine invertebrate is based on the assumption that natural populations globally belong to a single species. Therefore, understanding the true taxonomic classification may have implications for experimental design and data management. Phylogenies inferred from mitochondrial and nuclear DNA markers accredit the existence of two cryptic species: C. intestinalis sp. A, genetically homogeneous, distributed in the Mediterranean, northeast Atlantic, and Pacific, and C. intestinalis sp. B, geographically structured and encountered in the North Atlantic. Species-level divergence is further entailed by cross-breeding estimates. C. intestinalis A and B from allopatric populations cross-fertilize, but hybrids remain infertile because of defective gametogenesis. Although anatomy illustrates an overall interspecific similarity lacking in diagnostic features, we provide consistent tools for in-field and in-laboratory species discrimination. Finding of two cryptic taxa in C. intestinalis raises interest in a new tunicate genome as a gateway to studies in speciation and ecological adaptation of chordates.


Asunto(s)
Ciona intestinalis/clasificación , Ciona intestinalis/genética , Modelos Biológicos , Filogenia , Animales , Femenino , Masculino , Datos de Secuencia Molecular , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA