Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 133(9): 096001, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39270172

RESUMEN

Discovering novel emergent behavior in quantum many-body systems is a main objective of contemporary research. In this Letter, we explore the effects on phases and phase transitions of the proximity to a Ruelle-Fisher instability, marking the transition to a collapsed state. To accomplish this, we study by quantum Monte Carlo simulations a two-dimensional system of soft-core bosons interacting through an isotropic finite-ranged attraction, with a parameter η describing its strength. If η exceeds a characteristic value η_{c}, the thermodynamic limit is lost, as the system becomes unstable against collapse. We investigate the phase diagram of the model for η≲η_{c}, finding-in addition to a liquid-vapor transition-a first-order transition between two liquid phases. Upon cooling, the high-density liquid turns superfluid, possibly above the vapor-liquid-liquid triple temperature. As η approaches η_{c}, the stability region of the high-density liquid is shifted to increasingly higher densities, a behavior at variance with distinguishable quantum or classical particles. Finally, for η larger than η_{c} our simulations yield evidence of collapse of the low-temperature fluid for any density; the collapsed system forms a circular cluster whose radius is insensitive to the number of particles.

2.
Phys Rev Lett ; 132(2): 026001, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38277582

RESUMEN

Confinement can have a considerable effect on the behavior of particle systems and is therefore an effective way to discover new phenomena. A notable example is a system of identical bosons at low temperature under an external field mimicking an isotropic bubble trap, which constrains the particles to a portion of space close to a spherical surface. Using path integral Monte Carlo simulations, we examine the spatial structure and superfluid fraction in two emblematic cases. First, we look at soft-core bosons, finding the existence of supersolid cluster arrangements with polyhedral symmetry; we show how different numbers of clusters are stabilized depending on the trap radius and the particle mass, and we characterize the temperature behavior of the cluster phases. A detailed comparison with the behavior of classical soft-core particles is provided too. Then, we examine the case, of more immediate experimental interest, of a dipolar condensate on the sphere, demonstrating how a quasi-one-dimensional supersolid of clusters is formed on a great circle for realistic values of density and interaction parameters. Crucially, this supersolid phase is only slightly disturbed by gravity. We argue that the predicted phases can be revealed in magnetic traps with spherical-shell geometry, possibly even in a lab on Earth. Our results pave the way for future simulation studies of correlated quantum systems in curved geometries.

3.
Phys Rev Lett ; 131(17): 173402, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37955480

RESUMEN

We study the low-temperature phases of interacting bosons on a two-dimensional quasicrystalline lattice. By means of numerically exact path integral Monte Carlo simulations, we show that for sufficiently weak interactions the system is a homogeneous Bose-Einstein condensate that develops density modulations for increasing filling factor. The simultaneous occurrence of sizeable condensate fraction and density modulation can be interpreted as the analogous, in a quasicrystalline lattice, of supersolid phases occurring in conventional periodic lattices. For sufficiently large interaction strength and particle density, global condensation is lost and quantum exchanges are restricted to specific spatial regions. The emerging quantum phase is therefore a Bose glass, which here is stabilized in the absence of any source of disorder or quasidisorder, purely as a result of the interplay between quantum effects, particle interactions and quasicrystalline substrate. This finding clearly indicates that (quasi)disorder is not essential to observe Bose glass physics. Our results are of interest for ongoing experiments on (quasi)disorder-free quasicrystalline lattices.

4.
Entropy (Basel) ; 24(2)2022 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-35205559

RESUMEN

In this work, we explore the relevant methodology for the investigation of interacting systems with contact interactions, and we introduce a class of zonal estimators for path-integral Monte Carlo methods, designed to provide physical information about limited regions of inhomogeneous systems. We demonstrate the usefulness of zonal estimators by their application to a system of trapped bosons in a quasiperiodic potential in two dimensions, focusing on finite temperature properties across a wide range of values of the potential. Finally, we comment on the generalization of such estimators to local fluctuations of the particle numbers and to magnetic ordering in multi-component systems, spin systems, and systems with nonlocal interactions.

5.
Phys Rev Lett ; 119(21): 215302, 2017 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-29219392

RESUMEN

We systematically investigate the zero temperature phase diagram of bosons interacting via dipolar interactions in three dimensions in free space via path integral Monte Carlo simulations with a few hundreds of particles and periodic boundary conditions based on the worm algorithm. Upon increasing the strength of the dipolar interaction and at sufficiently high densities we find a wide region where filaments are stabilized along the direction of the external field. Most interestingly by computing the superfluid fraction we conclude that the superfluidity is anisotropic and is greatly suppressed along the orthogonal plane. Finally, we perform simulations at finite temperature confirming the stability of the filaments against thermal fluctuations and provide an estimate of the superfluid fraction in the weak coupling limit in the framework of the Landau two-fluid model.

6.
Phys Rev Lett ; 118(6): 067001, 2017 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-28234534

RESUMEN

At low enough temperatures and high densities, the equilibrium configuration of an ensemble of ultrasoft particles is a self-assembled, ordered, cluster crystal. In the present Letter, we explore the out-of-equilibrium dynamics for a two-dimensional realization, which is relevant to superconducting materials with multiscale intervortex forces. We find that, for small temperatures following a quench, the suppression of the thermally activated particle hopping hinders the ordering. This results in a glass transition for a monodispersed ensemble, for which we derive a microscopic explanation in terms of an "effective polydispersity" induced by multiscale interactions. This demonstrates that a vortex glass can form in clean systems of thin films of "type-1.5" superconductors. An additional setup to study this physics can be layered superconducting systems, where the shape of the effective vortex-vortex interactions can be engineered.

7.
Artículo en Inglés | MEDLINE | ID: mdl-26651695

RESUMEN

We study the phases and dynamics of a gas of monodisperse particles interacting via soft-core potentials in two spatial dimensions, which is of interest for soft-matter colloidal systems and quantum atomic gases. Using exact theoretical methods, we demonstrate that the equilibrium low-temperature classical phase simultaneously breaks continuous translational symmetry and dynamic space-time homogeneity, whose absence is usually associated with out-of-equilibrium glassy phenomena. This results in an exotic self-assembled cluster crystal with coexisting liquidlike long-time dynamical properties, which corresponds to a classical analog of supersolid behavior. We demonstrate that the effects of quantum fluctuations and bosonic statistics on cluster-glassy crystals are separate and competing: Zero-point motion tends to destabilize crystalline order, which can be restored by bosonic statistics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA