Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Tetrahedron Lett ; 1462024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39100891

RESUMEN

The rational design of atropisomeric small molecules is becoming increasingly common in chemical synthesis as a result of the unique advantages this property provides in drug discovery, asymmetric catalysis, and chiroptical activity. In this study, we designed a synthesis of a configurationally stable ß-carboline in six steps. Our synthesis made use of an innovative Grignard addition/elimination reaction that formed an yne-ynamide precursor that then reacted with ethyl cyanoformate in a rhodium(I)-catalyzed [2+2+2] cyclotrimerization reaction to give the atropisomeric ß-carboline in excellent yield, good enantioselectivity, and excellent regioselectivity. Extensive optimization of this transformation is described. Racemization kinetics experiments were also conducted on the individual atropisomers and their absolute configurations were determined by circular dichroism.

2.
Arch Biochem Biophys ; 757: 110025, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38740275

RESUMEN

Drug metabolism by human gut microbes is often exemplified by azo bond reduction in the anticolitic prodrug sulfasalazine. Azoreductase activity is often found in incubations with cell cultures or ex vivo gut microbiome samples and contributes to the xenobiotic metabolism of drugs and food additives. Applying metagenomic studies to personalized medicine requires knowledge of the genes responsible for sulfasalazine and other drug metabolism, and candidate genes and proteins for drug modifications are understudied. A representative gut-abundant azoreductase from Anaerotignum lactatifermentan DSM 14214 efficiently reduces sulfasalazine and another drug, phenazopyridine, but could not reduce all azo-bonded drugs in this class. We used enzyme kinetics to characterize this enzyme for its NADH-dependent reduction of these drugs and food additives and performed computational docking to provide the groundwork for understanding substrate specificity in this family. We performed an analysis of the Flavodoxin-like fold InterPro family (IPR003680) by computing a sequence similarity network to classify distinct subgroups of the family and then performed chemically-guided functional profiling to identify proteins that are abundant in the NIH Human Microbiome Project dataset. This strategy aims to reduce the number of unique azoreductases needed to characterize one protein family in the diverse set of potential drug- and dye-modifying activities found in the human gut microbiome.


Asunto(s)
Microbioma Gastrointestinal , NADH NADPH Oxidorreductasas , Nitrorreductasas , Humanos , Nitrorreductasas/metabolismo , Nitrorreductasas/genética , NADH NADPH Oxidorreductasas/metabolismo , NADH NADPH Oxidorreductasas/genética , NADH NADPH Oxidorreductasas/química , Colorantes/metabolismo , Simulación del Acoplamiento Molecular , Especificidad por Sustrato , Sulfasalazina , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Cinética , Clostridiales/enzimología , Clostridiales/genética , Compuestos Azo/metabolismo , Compuestos Azo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA