Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 12(19)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36234440

RESUMEN

In recent decades, new and improved materials have been developed with a significant interest in three-dimensional (3D) scaffolds that can cope with the diverse needs of the expanding biomedical field and promote the required biological response in multiple applications. Due to their biocompatibility, ability to encapsulate and deliver drugs, and capacity to mimic the extracellular matrix (ECM), typical hydrogels have been extensively investigated in the biomedical and biotechnological fields. The major limitations of hydrogels include poor mechanical integrity and limited cell interaction, restricting their broad applicability. To overcome these limitations, an emerging approach, aimed at the generation of hybrid materials with synergistic effects, is focused on incorporating nanoparticles (NPs) within polymeric gels to achieve nanocomposites with tailored functionality and improved properties. This review focuses on the unique contributions of clay nanoparticles, regarding the recent developments of clay-based nanocomposite hydrogels, with an emphasis on biomedical applications.

2.
J Sci Food Agric ; 102(5): 2127-2134, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-34605029

RESUMEN

BACKGROUND: Zein as a sole material is not suitable for technological applications since it is not flexible. A possible solution to extend the applications of zein is the formation of zein-polysaccharide complexes. As a first step, sonication parameters were optimized to obtain finer emulsions formulated with zein, rosemary essential oil as food preservative, and sunflower oil, by means of response surface methodology. After the formation of these guar- or diutan-zein complexes the rheological properties of these food emulsions were evaluated. RESULTS: An increase in sonication power, sonication time and cycles provoked a decrease in mean droplet size and a lack of recoalescence. The optimized emulsion was the starting point to form two different complexes: zein with diutan gum and zein with guar gum at different concentrations. Rheological properties as well as the microstructure observed by field emission scanning electron microscopy (FESEM) were analyzed. Interestingly, zein-guar gum complexes did not form a rheological gel; as a consequence, emulsions containing them seem to undergo a destabilization process with aging time. In contrast, emulsions formulated with zein-diutan gum presented a 3D network, observed by FESEM technique and proved by rheological measurements. CONCLUSION: While emulsions containing zein-guar gum complexes did not form networks to stabilize oil droplets, zein-diutan gum complexes did. This work brings to light the importance of the selection of polysaccharide used in food emulsions formulated with zein. © 2021 Society of Chemical Industry.


Asunto(s)
Conservación de Alimentos , Zeína , Emulsiones/química , Conservación de Alimentos/métodos , Galactanos , Mananos , Gomas de Plantas/química , Sonicación , Zeína/química
3.
Nanomaterials (Basel) ; 11(1)2020 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-33374282

RESUMEN

Several problems and limitations faced in the treatment of many diseases can be overcome by using controlled drug delivery systems (DDS), where the active compound is transported to the target site, minimizing undesirable side effects. In situ-forming hydrogels that can be injected as viscous liquids and jellify under physiological conditions and biocompatible clay nanoparticles have been used in DDS development. In this work, polymer-clay composites based on Pluronics (F127 and F68) and nanoclays were developed, aiming at a biocompatible and injectable system for long-term controlled delivery of methylene blue (MB) as a model drug. MB release from the systems produced was carried out at 37 °C in a pH 7.4 medium. The Pluronic formulation selected (F127/F68 18/2 wt.%) displayed a sol/gel transition at approx. 30 °C, needing a 2.5 N force to be injected at 25 °C. The addition of 2 wt.% of Na116 clay decreased the sol/gel transition to 28 °C and significantly enhanced its viscoelastic modulus. The most suitable DDS for long-term application was the Na116-MB hybrid from which, after 15 days, only 3% of the encapsulated MB was released. The system developed in this work proved to be injectable, with a long-term drug delivery profile up to 45 days.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA