RESUMEN
AIMS: Fungal diseases are among the main factors limiting high yields of soybean crop. Colletotrichum isolates from soybean plants with anthracnose symptoms were studied from different regions and time periods in Brazil using molecular, morphological and pathogenic analyses. METHODS AND RESULTS: Bayesian phylogenetic inference of GAPDH, HIS3 and ITS-5.8S rDNA sequences, the morphologies of colony and conidia, and inoculation tests on seeds and seedlings were performed. All isolates clustered only with Colletotrichum truncatum species in three well-separated clusters. Intraspecific genetic diversity revealed 27 distinct haplotypes in 51 fungal isolates; some of which were identical to C. truncatum sequences from other regions around the world, while others were related to alternative hosts. Conidia were falcate, hyaline, unicellular and aseptate, formed in acervuli, with variable dimensions. Despite being pathogenic to seedlings by both inoculation methods, variation was observed in the aggressiveness of the tested isolates, which was not correlated with genetic variation. CONCLUSION: The identification of C. truncatum in the sampled isolates was evidenced as being the only causal agent of soybean anthracnose in Brazil until 2007, with relevant genetic, morphological and pathogenic variability as well as a broad geographical origin. The wide distribution of the predominant C. truncatum haplotype indicated the existence of a highly efficient mechanism of pathogen dispersal over long distances, reinforcing the role of seeds as the primary source of disease inoculum. SIGNIFICANCE AND IMPACT OF THE STUDY: The characterization and distribution of Colletotrichum species in soybean-producing regions in Brazil is fundamental for understanding the disease epidemiology and for ensuring effective control strategies against anthracnose.
Asunto(s)
Colletotrichum/aislamiento & purificación , Glycine max/microbiología , Enfermedades de las Plantas/microbiología , Teorema de Bayes , Brasil , Colletotrichum/clasificación , Colletotrichum/citología , Colletotrichum/genética , ADN de Hongos/genética , ADN Ribosómico , Variación Genética , Geografía , Filogenia , Glycine max/genética , Esporas Fúngicas/clasificación , Esporas Fúngicas/citología , Esporas Fúngicas/aislamiento & purificaciónRESUMEN
The Atlantic rainforest species Ocotea catharinensis, Ocotea odorifera, and Ocotea porosa have been extensively harvested in the past for timber and oil extraction and are currently listed as threatened due to overexploitation. To investigate the genetic diversity and population structure of these species, we developed 8 polymorphic microsatellite markers for O. odorifera from an enriched microsatellite library by using 2 dinucleotide repeats. The microsatellite markers were tested for cross-amplification in O. catharinensis and O. porosa. The average number of alleles per locus was 10.2, considering all loci over 2 populations of O. odorifera. Observed and expected heterozygosities for O. odorifera ranged from 0.39 to 0.93 and 0.41 to 0.92 across populations, respectively. Cross-amplification of all loci was successfully observed in O. catharinensis and O. porosa except 1 locus that was found to lack polymorphism in O. porosa. Combined probabilities of identity in the studied Ocotea species were very low ranging from 1.0 x 10-24 to 7.7 x 10-24. The probability of exclusion over all loci estimated for O. odorifera indicated a 99.9% chance of correctly excluding a random nonparent individual. The microsatellite markers described in this study have high information content and will be useful for further investigations on genetic diversity within these species and for subsequent conservation purposes.