Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
PLoS One ; 17(5): e0263866, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35584085

RESUMEN

BACKGROUND: It is critical to capture data and modeling from the COVID-19 pandemic to understand as much as possible and prepare for future epidemics and possible pandemics. The Hawaiian Islands provide a unique opportunity to study heterogeneity and demographics in a controlled environment due to the geographically closed borders and mostly uniform pandemic-induced governmental controls and restrictions. OBJECTIVE: The goal of the paper is to quantify the differences and similarities in the spread of COVID-19 among different Hawaiian islands as well as several other archipelago and islands, which could potentially help us better understand the effect of differences in social behavior and various mitigation measures. The approach should be robust with respect to the unavoidable differences in time, as the arrival of the virus and promptness of mitigation measures may vary significantly among the chosen locations. At the same time, the comparison should be able to capture differences in the overall pandemic experience. METHODS: We examine available data on the daily cases, positivity rates, mobility, and employ a compartmentalized model fitted to the daily cases to develop appropriate comparison approaches. In particular, we focus on merge trees for the daily cases, normalized positivity rates, and baseline transmission rates of the models. RESULTS: We observe noticeable differences among different Hawaiian counties and interesting similarities between some Hawaiian counties and other geographic locations. The results suggest that mitigation measures should be more localized, that is, targeting the county level rather than the state level if the counties are reasonably insulated from one another. We also notice that the spread of the disease is very sensitive to unexpected events and certain changes in mitigation measures. CONCLUSIONS: Despite being a part of the same archipelago and having similar protocols for mitigation measures, different Hawaiian counties exhibit quantifiably different dynamics of the spread of the disease. One potential explanation is that not sufficiently targeted mitigation measures are incapable of handling unexpected, localized outbreak events. At a larger-scale view of the general spread of the disease on the Hawaiian island counties, we find very interesting similarities between individual Hawaiian islands and other archipelago and islands.


Asunto(s)
COVID-19 , COVID-19/epidemiología , Hawaii/epidemiología , Humanos , Islas , Pandemias , SARS-CoV-2
2.
Artículo en Inglés | MEDLINE | ID: mdl-35627656

RESUMEN

In the face of great uncertainty and a global crisis from COVID-19, mathematical and epidemiologic COVID-19 models proliferated during the pandemic. Yet, many models were not created with the explicit audience of policymakers, the intention of informing specific scenarios, or explicit communication of assumptions, limitations, and complexities. This study presents a case study of the roles, uses, and approaches to COVID-19 modeling and forecasting in one state jurisdiction in the United States. Based on an account of the historical real-world events through lived experiences, we first examine the specific modeling considerations used to inform policy decisions. Then, we review the real-world policy use cases and key decisions that were informed by modeling during the pandemic including the role of modeling in informing planning for hospital capacity, isolation and quarantine facilities, and broad public communication. Key lessons are examined through the real-world application of modeling, noting the importance of locally tailored models, the role of a scientific and technical advisory group, and the challenges of communicating technical considerations to a public audience.


Asunto(s)
COVID-19 , COVID-19/epidemiología , Hawaii/epidemiología , Política de Salud , Humanos , Pandemias/prevención & control , Formulación de Políticas , Estados Unidos
3.
Micromachines (Basel) ; 12(6)2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34208685

RESUMEN

Copepod nauplii are larval crustaceans with important ecological functions. Due to their small size, they experience an environment of low Reynolds number within their aquatic habitat. Here we provide a mathematical model of a swimming copepod nauplius with two legs moving in a plane. This model allows for both rotation and two-dimensional displacement by the periodic deformation of the swimmer's body. The system is studied from the framework of optimal control theory, with a simple cost function designed to approximate the mechanical energy expended by the copepod. We find that this model is sufficiently realistic to recreate behavior similar to those of observed copepod nauplii, yet much of the mathematical analysis is tractable. In particular, we show that the system is controllable, but there exist singular configurations where the degree of non-holonomy is non-generic. We also partially characterize the abnormal extremals and provide explicit examples of families of abnormal curves. Finally, we numerically simulate normal extremals and observe some interesting and surprising phenomena.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA