Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Membranes (Basel) ; 13(5)2023 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-37233516

RESUMEN

The entrance of even a small amount of phosphorus compounds into natural waters leads to global problems that require the use of modern purification technologies. This paper presents the results of testing a hybrid electrobaromembrane (EBM) method for the selective separation of Cl- (always present in phosphorus-containing waters) and H2PO4- anions. Separated ions of the same charge sign move in an electric field through the pores of a nanoporous membrane to the corresponding electrode, while a commensurate counter-convective flow in the pores is created by a pressure drop across the membrane. It has been shown that EBM technology provides high fluxes of ions being separated across the membrane as well as a high selectivity coefficient compared to other membrane methods. During the processing of solution containing 0.05 M NaCl and 0.05 M NaH2PO4, the flux of phosphates through a track-etched membrane can reach 0.29 mol/(m2×h). Another possibility for separation is the EBM extraction of chlorides from the solution. Its flux can reach 0.40 mol/(m2×h) through the track-etched membrane and 0.33 mol/(m2×h) through a porous aluminum membrane. The separation efficiency can be very high by using both the porous anodic alumina membrane with positive fixed charges and the track-etched membrane with negative fixed charges due to the possibility of directing the fluxes of separated ions in opposite sides.

2.
Membranes (Basel) ; 13(5)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37233570

RESUMEN

New processes for recycling valuable materials from used lithium-ion batteries (LIBs) need to be developed. This is critical to both meeting growing global demand and mitigating the electronic waste crisis. In contrast to the use of reagent-based processes, this work shows the results of testing a hybrid electrobaromembrane (EBM) method for the selective separation of Li+ and Co2+ ions. Separation is carried out using a track-etched membrane with a pore diameter of 35 nm, which can create conditions for separation if an electric field and an oppositely directed pressure field are applied simultaneously. It is shown that the efficiency of ion separation for a lithium/cobalt pair can be very high due to the possibility of directing the fluxes of separated ions to opposite sides. The flux of lithium through the membrane is about 0.3 mol/(m2 × h). The presence of coexisting nickel ions in the feed solution does not affect the flux of lithium. It is shown that the EBM separation conditions can be chosen so that only lithium is extracted from the feed solution, while cobalt and nickel remain in it.

3.
Membranes (Basel) ; 13(1)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36676891

RESUMEN

The application of electrodialysis for tartrate stabilization and reagent-free acidity correction of wine and juices is attracting increasing interest. New aliphatic membranes CJMC-3 and CJMA-3 and aromatic membranes CSE and ASE were tested to determine their suitability for use in these electrodialysis processes and to evaluate the fouling of these membranes by wine components for a short (6-8 h) operating time. Using IR spectroscopy, optical indication and measurement of surface contact angles, the chemical composition of the studied membranes, as well as some details about their fouling by wine components, was clarified. The current-voltage charsacteristics, conductivity and water-splitting capacity of the membranes before and after electrodialysis were analyzed. We found that in the case of cation-exchange membranes, complexes of anthocyanins with metal ions penetrate into the bulk (CJMC-3) or are localized on the surface (CSE), depending on the degree of crosslinking of the polymer matrix. Adsorption of wine components by the surface of anion-exchange membranes CJMA-3 and ASE causes an increase in water splitting. Despite fouling under identical conditions of electrodialysis, membrane pair CJMC-3 and CJMA-3 provided 18 ± 1 tartrate recovery with 31 · 10-3 energy consumption, whereas CSE and ASE provided 20 ± 1% tartrate recovery with an energy consumption of 28 · 10-3 Wh, in addition to reducing the conductivity of wine by 20 ± 1%. The casting of aliphatic polyelectrolyte films on the surface of aromatic membranes reduces fouling with a relatively small increase in energy consumption and approximately the same degree of tartrate recovery compared to pristine CSE and ASE.

4.
Membranes (Basel) ; 12(12)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36557094

RESUMEN

Electrodialysis (ED) is an attractive method of tartrate stabilization of wine due to its rapidity and reagentlessness. At the same time, fouling of ion-exchange membranes by the components of wine materials is still an unsolved problem. The effect of ethanol, polyphenols (mainly anthocyanins and proanthocyanidins) and saccharides (fructose) on the fouling of aliphatic ion-exchange membranes CJMA-6 and CJMC-5 (manufactured by Hefei Chemjoy Polymer Materials Co. Ltd., Hefei, China) was analyzed using model solutions. It was shown that the mechanism and consequences of fouling are different in the absence of an electric field and during electrodialysis. In particular, a layer of colloidal particles is deposited on the surface of the CJMA-6 anion-exchange membrane in underlimiting current modes. Its thickness increases with increasing current density, apparently due to the implementation of a trap mechanism involving tartaric acid anions, as well as protons, which are products of water splitting and "acid dissociation". A successful attempt was made to clean CJMA-6 in operando by pumping a water-alcohol solution of KCl through the desalination compartment and changing electric field direction. It has been established that such a cleaning process suppresses the subsequent biofouling of ion-exchange membranes. In addition, selective recovery of polyphenols with high antioxidant activity is possible.

5.
Polymers (Basel) ; 14(23)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36501567

RESUMEN

Electrodialysis with layer-by-layer coated membranes is a promising method for the separation of monovalent and polyvalent ions. Since the separation selectivity is significantly reduced in the presence of defects in the multilayer system, the stability of the modifiers becomes an important issue. This article reports the i-V curves of layer-by-layer coated membranes based on the heterogeneous MK-40 membrane before and after 50 h long electrodialysis of a solution containing sodium and calcium ions at an underlimiting current density, and the values of concentrations of cations in the desalination chamber during electrodialysis. It is shown that the transport of bivalent ions through the modified membranes is reduced throughout the electrodialysis by about 50%, but the operation results in decreased resistance of the membrane modified with polyethylenimine, which may suggest damage to the modifying layer. Even after electrodialysis, the modified membrane demonstrated experimental limiting current densities higher than that of the substrate, and in case of the membrane modified with polyallylamine, the limiting current density 10% higher than that of the substrate membrane.

6.
Membranes (Basel) ; 12(11)2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36363662

RESUMEN

A comparative analysis of mass transfer characteristics and energy consumption was carried out for the electrodialysis recovery of PV from of NaH2PO4 solutions and multicomponent (0.045 M NaxH(3-x)PO4, 0.02 M KCl, 0.045 M KOH, 0.028 M CaCl2, and 0.012 M MgCl2, pH 6.0 ± 0.1) solution in conventional continuous current (CC) and pulsed electric field (PEF) modes. The advantages of using PEF in comparison with CC mode are shown to increase the current efficiency and reduce energy consumption, as well as reduce scaling on heterogeneous anion-exchange membranes. It has been shown that PEF contributes to the suppression of the "acid dissociation" phenomenon, which is specific for anion-exchange membranes in phosphate-containing solutions. Pulse and pause lapse 0.1 s-0.1 s and duty cycle 1/2 were found to be optimal among the studied PEF parameters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA