Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanotechnology ; 31(35): 355505, 2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-32428887

RESUMEN

For biomolecule sensing purposes a solid-state nanopore platform based on silicon has certain advantages as compared to nanopores on other substrates such as graphene, silicon nitride, silicon oxide etc Capitalizing on the developed CMOS technology, nanopores on silicon are scalable without any requirement for additional processing, the devices are low cost and the process can be repeatable with a high yield. One of the essential requirements in biomolecule sensing is the ability of the nanopore to interact with the analyte. In this work, we present a method for processing high aspect ratio, single nanopores in the range of 10-30 nm in diameter and approximately 700 nm in length on a silicon-on-insulator (SOI) wafer. The presented method of manufacturing the high aspect ratio individual nanopores combines optical lithography and anisotropic KOH etching with a final electrochemical etching step to form the nanopores and is repeatable and can be processed in batches. We demonstrate electrical detection of dsDNA translocation, where the characteristic time of the process is in the millisecond range. We also analyse the translocation parameters and correlate the enhanced length of the nanopore to a longer translocation time as compared to other substrates.


Asunto(s)
Técnicas Biosensibles/instrumentación , ADN de Cadena Simple/análisis , Agua/química , Anisotropía , Nanoporos
2.
Sci Rep ; 6: 20538, 2016 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-26852922

RESUMEN

Carrier multiplication in nanostructures promises great improvements in a number of widely used technologies, among others photodetectors and solar cells. The decade since its discovery was ridden with fierce discussions about its true existence, magnitude, and mechanism. Here, we introduce a novel, purely spectroscopic approach for investigation of carrier multiplication in nanocrystals. Applying this method to silicon nanocrystals in an oxide matrix, we obtain an unambiguous spectral signature of the carrier multiplication process and reveal details of its size-dependent characteristics-energy threshold and efficiency. The proposed method is generally applicable and suitable for both solid state and colloidal samples, as well as for a great variety of different materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA