Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomaterials ; 313: 122768, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39232332

RESUMEN

As the most prominent and ideal modality in female fertility preservation, ovarian tissue cryopreservation, and transplantation often confront the challenge of ischemic damage and follicular loss from avascular transplantation. To surmount this impediment, we engineered a novel platelet-derived factors-encapsulated fibrin hydrogel (PFH), a paradigmatic biomaterial. PFH encapsulates autologous platelet-derived factors, utilizing the physiological blood coagulation cascade for precise local delivery of bioactive molecules. In our study, PFH markedly bolstered the success of avascular ovarian tissue transplantation. Notably, the quantity and quality of follicles were preserved with improved neovascularization, accompanied by decreased DNA damage, increased ovulation, and superior embryonic development rates under a Low-concentration Platelet-rich plasma-derived factors encapsulated fibrin hydrogel (L-PFH) regimen. At a stabilized point of tissue engraftment, gene expression analysis mirrored normal ovarian tissue profiles, underscoring the effectiveness of L-PFH in mitigating the initial ischemic insult. This autologous blood-derived biomaterial, inspired by nature, capitalizes on the blood coagulation cascade, and combines biodegradability, biocompatibility, safety, and cost-effectiveness. The adjustable properties of this biomaterial, even in injectable form, extend its potential applications into the broader realm of personalized regenerative medicine. PFH emerges as a promising strategy to counter ischemic damage in tissue transplantation, signifying a broader therapeutic prospect. (197 words).


Asunto(s)
Preservación de la Fertilidad , Hidrogeles , Isquemia , Neovascularización Fisiológica , Ovario , Femenino , Animales , Preservación de la Fertilidad/métodos , Neovascularización Fisiológica/efectos de los fármacos , Ovario/efectos de los fármacos , Hidrogeles/química , Isquemia/terapia , Humanos , Fibrina/química , Plasma Rico en Plaquetas/metabolismo
2.
Biomater Res ; 28: 0054, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39135549

RESUMEN

Hormone replacement therapy (HRT) has been a primary method in menopausal women and patients with ablated ovaries, but safety has been a concern. Cell-based HRT has emerged as an alternative approach without side effects causing pharmaceutical HRT via 3-dimensionally engineered constructs layering ovarian hormone-producing cells. In this study, we applied micro-sized ovarian cell-laden hydrogel beads as an approach to cell-based HRT using a minimally invasive method in the menopausal rat model. Here, we constructed GC/TC-laden microbeads (GTBs; GC, granulosa cell; TC, theca cell) that allow crosstalk between endocrine cells, encapsulating multiple beads for the figuration of the original ovary. We assessed the ovarian hormone production function of GTB through in vitro culture for 90 days. We applied it to a menopausal rat model and confirmed that GTB-injected rats restored their endocrine function, leading to the regeneration of the thinned endometrium and the maintenance of regular estrous cycles in some individuals. Additionally, it was observed to alleviate menopausal symptoms, including body weight gain and osteoporosis. Notably, the GTB-injected rats did not show mammary gland hyperplasia observed in the pharmaceutical HRT groups and exhibited fewer p53- and KI67-positive and an increase in phosphatase and tensin homolog-positive mammary gland epithelial cells compared to pharmaceutical hormone-treated rats. These results suggest that GTB-based HRT could present a lower risk of breast cancer compared to conventional pharmaceutical-HRT use. Our study highlights the potential of cell-based HRT using an injectable artificial ovary, offering a safer alternative for women requiring HRT.

3.
Yonsei Med J ; 63(7): 648-656, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35748076

RESUMEN

PURPOSE: In women, menopause manifests with a variety of symptoms related to sex-hormone deficiency. Supplementing steroid hormones with pharmacological drugs has been widely practiced. However, considering the possible complications associated with artificial hormone therapy, studies have been conducted to find an alternative to pharmacological hormone replacement therapy. Accordingly, this study aimed to evaluate the efficacy of tissue-based hormone replacement therapy (tHRT) for treating post-menopausal signs and symptoms. MATERIALS AND METHODS: CD-1 mice were ovariectomized, and the ovaries were cryopreserved. Following artificial induction of post-menopausal osteoporosis, cryopreserved ovaries were subcutaneously autografted, and indexes related to bone health were monitored for 12 weeks. Bone mineral density (BMD), bone mineral contents (BMC), total bone volume (BV), and body fat mass were measured by dual energy X-ray absorptiometry. Uterine atrophy was assessed histologically, and bone microstructures were imaged by micro-computed tomography analysis. RESULTS: Regardless of the number of grafted ovaries, the BMC, BMD, and BV values of mice that underwent ovary transplantation were better than those that did not undergo transplantation. The uteruses in these mice were thicker and heavier after auto-transplantation. Furthermore, the bone microstructure recovered after tHRT. CONCLUSION: Recovery of menopause-related bone loss and uterine atrophy was achieved through tHRT. Ovarian tissue cryopreservation and transplantation may be applicable not only in patients wanting to preserve fertility but also in sex hormone-deficient post-menopausal women.


Asunto(s)
Terapia de Reemplazo de Hormonas , Menopausia , Absorciometría de Fotón , Animales , Atrofia , Densidad Ósea , Terapia de Reemplazo de Estrógeno , Femenino , Hormonas , Humanos , Ratones , Microtomografía por Rayos X
4.
Biofabrication ; 14(1)2021 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-34852328

RESUMEN

Transplantation of ovary is one method of facilitating fertility preservation to increase the quality of life of cancer survivors. Immediately after transplantation, ovaries are under ischemic conditions owing to a lack of vascular anastomosis between the graft and host tissues. The transplanted ovaries can suffer damage because of lack of oxygen and nutrients, resulting in necrosis and dysfunction. In the technique proposed in this paper, the ovary is encapsulated with nitric oxide-releasing nanoparticles (NO-NPs) in fibrin hydrogels, which form a carrying matrix to prevent ischemic damage and accelerate angiogenesis. The low concentration of NO released from mPEG-PLGA nanoparticles elicits blood vessel formation, which allows transplanted ovaries in the subcutis to recover from the ischemic period. In experiments with mice, the NO-NPs/fibrin hydrogel improved the total number and quality of ovarian follicles after transplantation. The intra-ovarian vascular density was 4.78 folds higher for the NO-NPs/fibrin hydrogel groups compared to that for the nontreated groups. Finally,in vitrofertilization revealed a successful blastocyst formation rate for NO-NPs/fibrin hydrogel coated ovaries. Thus, NO-NPs/fibrin hydrogels can provide an appropriate milieu to promote angiogenesis and be considered as adjuvant surgery materials for fertility preservation.


Asunto(s)
Nanopartículas , Ovario , Animales , Femenino , Fibrina , Hidrogeles/farmacología , Ratones , Óxido Nítrico , Ovario/irrigación sanguínea , Ovario/trasplante , Calidad de Vida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA