Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 44(14)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38316565

RESUMEN

Although we must prioritize the processing of task-relevant information to navigate life, our ability to do so fluctuates across time. Previous work has identified fMRI functional connectivity (FC) networks that predict an individual's ability to sustain attention and vary with attentional state from 1 min to the next. However, traditional dynamic FC approaches typically lack the temporal precision to capture moment-to-moment network fluctuations. Recently, researchers have "unfurled" traditional FC matrices in "edge cofluctuation time series" which measure timepoint-by-timepoint cofluctuations between regions. Here we apply event-based and parametric fMRI analyses to edge time series to capture moment-to-moment fluctuations in networks related to attention. In two independent fMRI datasets examining young adults of both sexes in which participants performed a sustained attention task, we identified a reliable set of edges that rapidly deflects in response to rare task events. Another set of edges varies with continuous fluctuations in attention and overlaps with a previously defined set of edges associated with individual differences in sustained attention. Demonstrating that edge-based analyses are not simply redundant with traditional regions-of-interest-based approaches, up to one-third of reliably deflected edges were not predicted from univariate activity patterns alone. These results reveal the large potential in combining traditional fMRI analyses with edge time series to identify rapid reconfigurations in networks across the brain.


Asunto(s)
Atención , Encéfalo , Masculino , Femenino , Adulto Joven , Humanos , Modelos Lineales , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Atención/fisiología , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos
2.
bioRxiv ; 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37503244

RESUMEN

Although we must prioritize the processing of task-relevant information to navigate life, our ability to do so fluctuates across time. Previous work has identified fMRI functional connectivity (FC) networks that predict an individual's ability to sustain attention and vary with attentional state from one minute to the next. However, traditional dynamic FC approaches typically lack the temporal precision to capture moment-by-moment network fluctuations. Recently, researchers have 'unfurled' traditional FC matrices in 'edge cofluctuation time series' which measure time point-by-time point cofluctuations between regions. Here we apply event-based and parametric fMRI analyses to edge time series to capture high-frequency fluctuations in networks related to attention. In two independent fMRI datasets in which participants performed a sustained attention task, we identified a reliable set of edges that rapidly deflects in response to rare task events. Another set of edges varies with continuous fluctuations in attention and overlaps with a previously defined set of edges associated with individual differences in sustained attention. Demonstrating that edge-based analyses are not simply redundant with traditional regions-of-interest based approaches, up to one-third of reliably deflected edges were not predicted from univariate activity patterns alone. These results reveal the large potential in combining traditional fMRI analyses with edge time series to identify rapid reconfigurations in networks across the brain.

3.
Sci Rep ; 13(1): 9088, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37277406

RESUMEN

Objects in the real world usually appear with other objects. To form object representations independent of whether or not other objects are encoded concurrently, in the primate brain, responses to an object pair are well approximated by the average responses to each constituent object shown alone. This is found at the single unit level in the slope of response amplitudes of macaque IT neurons to paired and single objects, and at the population level in fMRI voxel response patterns in human ventral object processing regions (e.g., LO). Here, we compare how the human brain and convolutional neural networks (CNNs) represent paired objects. In human LO, we show that averaging exists in both single fMRI voxels and voxel population responses. However, in the higher layers of five CNNs pretrained for object classification varying in architecture, depth and recurrent processing, slope distribution across units and, consequently, averaging at the population level both deviated significantly from the brain data. Object representations thus interact with each other in CNNs when objects are shown together and differ from when objects are shown individually. Such distortions could significantly limit CNNs' ability to generalize object representations formed in different contexts.


Asunto(s)
Encéfalo , Reconocimiento Visual de Modelos , Animales , Humanos , Reconocimiento Visual de Modelos/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Redes Neurales de la Computación , Mapeo Encefálico , Imagen por Resonancia Magnética , Macaca , Percepción Visual
4.
bioRxiv ; 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36909506

RESUMEN

Objects in the real world often appear with other objects. To recover the identity of an object whether or not other objects are encoded concurrently, in primate object-processing regions, neural responses to an object pair have been shown to be well approximated by the average responses to each constituent object shown alone, indicating the whole is equal to the average of its parts. This is present at the single unit level in the slope of response amplitudes of macaque IT neurons to paired and single objects, and at the population level in response patterns of fMRI voxels in human ventral object processing regions (e.g., LO). Here we show that averaging exists in both single fMRI voxels and voxel population responses in human LO, with better averaging in single voxels leading to better averaging in fMRI response patterns, demonstrating a close correspondence of averaging at the fMRI unit and population levels. To understand if a similar averaging mechanism exists in convolutional neural networks (CNNs) pretrained for object classification, we examined five CNNs with varying architecture, depth and the presence/absence of recurrent processing. We observed averaging at the CNN unit level but rarely at the population level, with CNN unit response distribution in most cases did not resemble human LO or macaque IT responses. The whole is thus not equal to the average of its parts in CNNs, potentially rendering the individual objects in a pair less accessible in CNNs during visual processing than they are in the human brain.

5.
Cereb Cortex ; 33(8): 5025-5041, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36408606

RESUMEN

Patterns of whole-brain fMRI functional connectivity, or connectomes, are unique to individuals. Previous work has identified subsets of functional connections within these patterns whose strength predicts aspects of attention and cognition. However, overall features of these connectomes, such as how stable they are over time and how similar they are to a group-average (typical) or high-performance (optimal) connectivity pattern, may also reflect cognitive and attentional abilities. Here, we test whether individuals who express more stable, typical, optimal, and distinctive patterns of functional connectivity perform better on cognitive tasks using data from three independent samples. We find that individuals with more stable task-based functional connectivity patterns perform better on attention and working memory tasks, even when controlling for behavioral performance stability. Additionally, we find initial evidence that individuals with more typical and optimal patterns of functional connectivity also perform better on these tasks. These results demonstrate that functional connectome stability within individuals and similarity across individuals predicts individual differences in cognition.


Asunto(s)
Conectoma , Humanos , Conectoma/métodos , Encéfalo/diagnóstico por imagen , Cognición , Memoria a Corto Plazo , Atención , Imagen por Resonancia Magnética/métodos , Red Nerviosa
6.
J Exp Psychol Learn Mem Cogn ; 49(6): 889-899, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36201801

RESUMEN

Our most moving experiences, the ones that "stick," are hardly ever static but are dynamic, like a conversation, a gesture, or a dance. Previous work has shown robust memory for simple actions (e.g., jumping or turning), but it remains an open question how we remember more dynamic sequences of complex and expressive actions. Separately, with static images, previous work has found remarkable consistency in which images are remembered or forgotten across people-that is, an intrinsic "memorability"-but it is unclear whether semantically ambiguous and expressive actions might similarly be consistently remembered, despite the varying interpretations of what they could mean. How do we go from static memories to more memorable dynamic experiences? Using the test case of a rich and abstract series of actions from dance, we discover memorability as an intrinsic attribute of movement. Across genres, some movements were consistently remembered, regardless of the perceiver, and even regardless of the dancer. Among a comprehensive set of memory, movement, and aesthetic attributes, consistency in which movements people remembered was most predicted by subjective memorability, and importantly by both subjective (observer ratings) and objective (optical flow analysis) measures of the scale of motion, such that the less overall motion in a dance segment, the more memorable the movements tended to be. Importantly, we discover that memorability of a sequence is additive, where the memorability of individual snapshots and constituent moments ultimately contribute to the memorability of longer sequences. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Asunto(s)
Baile , Humanos , Recuerdo Mental , Movimiento , Trastornos de la Memoria , Comunicación
7.
Cereb Cortex ; 33(10): 6320-6334, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-36573438

RESUMEN

Difficulty with attention is an important symptom in many conditions in psychiatry, including neurodiverse conditions such as autism. There is a need to better understand the neurobiological correlates of attention and leverage these findings in healthcare settings. Nevertheless, it remains unclear if it is possible to build dimensional predictive models of attentional state in a sample that includes participants with neurodiverse conditions. Here, we use 5 datasets to identify and validate functional connectome-based markers of attention. In dataset 1, we use connectome-based predictive modeling and observe successful prediction of performance on an in-scan sustained attention task in a sample of youth, including participants with a neurodiverse condition. The predictions are not driven by confounds, such as head motion. In dataset 2, we find that the attention network model defined in dataset 1 generalizes to predict in-scan attention in a separate sample of neurotypical participants performing the same attention task. In datasets 3-5, we use connectome-based identification and longitudinal scans to probe the stability of the attention network across months to years in individual participants. Our results help elucidate the brain correlates of attentional state in youth and support the further development of predictive dimensional models of other clinically relevant phenotypes.


Asunto(s)
Atención , Trastorno del Espectro Autista , Encéfalo , Conectoma , Humanos , Adolescente , Trastorno del Espectro Autista/fisiopatología , Trastorno del Espectro Autista/psicología , Conjuntos de Datos como Asunto , Masculino , Femenino , Encéfalo/fisiopatología , Encéfalo/ultraestructura
8.
PLoS Biol ; 20(12): e3001938, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36542658

RESUMEN

Sustained attention (SA) and working memory (WM) are critical processes, but the brain networks supporting these abilities in development are unknown. We characterized the functional brain architecture of SA and WM in 9- to 11-year-old children and adults. First, we found that adult network predictors of SA generalized to predict individual differences and fluctuations in SA in youth. A WM model predicted WM performance both across and within children-and captured individual differences in later recognition memory-but underperformed in youth relative to adults. We next characterized functional connections differentially related to SA and WM in youth compared to adults. Results revealed 2 network configurations: a dominant architecture predicting performance in both age groups and a secondary architecture, more prominent for WM than SA, predicting performance in each age group differently. Thus, functional connectivity (FC) predicts SA and WM in youth, with networks predicting WM performance differing more between youths and adults than those predicting SA.


Asunto(s)
Imagen por Resonancia Magnética , Memoria a Corto Plazo , Niño , Adulto , Adolescente , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo , Atención , Mapeo Encefálico/métodos
9.
J Cogn Neurosci ; 34(12): 2406-2435, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36122358

RESUMEN

Previous research shows that, within human occipito-temporal cortex (OTC), we can use a general linear mapping function to link visual object responses across nonidentity feature changes, including Euclidean features (e.g., position and size) and non-Euclidean features (e.g., image statistics and spatial frequency). Although the learned mapping is capable of predicting responses of objects not included in training, these predictions are better for categories included than those not included in training. These findings demonstrate a near-orthogonal representation of object identity and nonidentity features throughout human OTC. Here, we extended these findings to examine the mapping across both Euclidean and non-Euclidean feature changes in human posterior parietal cortex (PPC), including functionally defined regions in inferior and superior intraparietal sulcus. We additionally examined responses in five convolutional neural networks (CNNs) pretrained with object classification, as CNNs are considered as the current best model of the primate ventral visual system. We separately compared results from PPC and CNNs with those of OTC. We found that a linear mapping function could successfully link object responses in different states of nonidentity transformations in human PPC and CNNs for both Euclidean and non-Euclidean features. Overall, we found that object identity and nonidentity features are represented in a near-orthogonal, rather than complete-orthogonal, manner in PPC and CNNs, just like they do in OTC. Meanwhile, some differences existed among OTC, PPC, and CNNs. These results demonstrate the similarities and differences in how visual object information across an identity-preserving image transformation may be represented in OTC, PPC, and CNNs.


Asunto(s)
Mapeo Encefálico , Imagen por Resonancia Magnética , Animales , Humanos , Imagen por Resonancia Magnética/métodos , Lóbulo Parietal/fisiología , Redes Neurales de la Computación , Lóbulo Temporal
10.
PLoS One ; 17(6): e0270667, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35763531

RESUMEN

Scene perception involves extracting the identities of the objects comprising a scene in conjunction with their configuration (the spatial layout of the objects in the scene). How object identity and configuration information is weighted during scene processing and how this weighting evolves over the course of scene processing however, is not fully understood. Recent developments in convolutional neural networks (CNNs) have demonstrated their aptitude at scene processing tasks and identified correlations between processing in CNNs and in the human brain. Here we examined four CNN architectures (Alexnet, Resnet18, Resnet50, Densenet161) and their sensitivity to changes in object and configuration information over the course of scene processing. Despite differences among the four CNN architectures, across all CNNs, we observed a common pattern in the CNN's response to object identity and configuration changes. Each CNN demonstrated greater sensitivity to configuration changes in early stages of processing and stronger sensitivity to object identity changes in later stages. This pattern persists regardless of the spatial structure present in the image background, the accuracy of the CNN in classifying the scene, and even the task used to train the CNN. Importantly, CNNs' sensitivity to a configuration change is not the same as their sensitivity to any type of position change, such as that induced by a uniform translation of the objects without a configuration change. These results provide one of the first documentations of how object identity and configuration information are weighted in CNNs during scene processing.


Asunto(s)
Encéfalo , Redes Neurales de la Computación , Cabeza , Humanos
11.
Neuroimage ; 257: 119279, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35577026

RESUMEN

The human brain flexibly controls different cognitive behaviors, such as memory and attention, to satisfy contextual demands. Much progress has been made to reveal task-induced modulations in the whole-brain functional connectome, but we still lack a way to model context-dependent changes. Here, we present a novel connectome-to-connectome (C2C) transformation framework that enables us to model the brain's functional reorganization from one connectome state to another in response to specific task goals. Using functional magnetic resonance imaging data from the Human Connectome Project, we demonstrate that the C2C model accurately generates an individual's task-related connectomes from their task-free (resting-state) connectome with a high degree of specificity across seven different cognitive states. Moreover, the C2C model amplifies behaviorally relevant individual differences in the task-free connectome, thereby improving behavioral predictions with increased power, achieving similar performance with just a third of the subjects needed when relying on resting-state data alone. Finally, the C2C model reveals how the brain reorganizes between cognitive states. Our observations support the existence of reliable state-specific subsystems in the brain and demonstrate that we can quantitatively model how the connectome reconfigures to different cognitive states, enabling more accurate predictions of behavior with fewer subjects.


Asunto(s)
Conectoma , Atención , Encéfalo/fisiología , Cognición/fisiología , Conectoma/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología
12.
Nat Hum Behav ; 6(6): 782-795, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35241793

RESUMEN

Attention is central to many aspects of cognition, but there is no singular neural measure of a person's overall attentional functioning across tasks. Here, using original data from 92 participants performing three different attention-demanding tasks during functional magnetic resonance imaging, we constructed a suite of whole-brain models that can predict a profile of multiple attentional components (sustained attention, divided attention and tracking, and working memory capacity) for novel individuals. Multiple brain regions across the salience, subcortical and frontoparietal networks drove accurate predictions, supporting a common (general) attention factor across tasks, distinguished from task-specific ones. Furthermore, connectome-to-connectome transformation modelling generated an individual's task-related connectomes from rest functional magnetic resonance imaging, substantially improving predictive power. Finally, combining the connectome transformation and general attention factor, we built a standardized measure that shows superior generalization across four independent datasets (total N = 495) of various attentional measures, suggesting broad utility for research and clinical applications.


Asunto(s)
Conectoma , Atención , Encéfalo/diagnóstico por imagen , Conectoma/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Memoria a Corto Plazo
13.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34845019

RESUMEN

While there is a substantial amount of work studying multilingualism's effect on cognitive functions, little is known about how the multilingual experience modulates the brain as a whole. In this study, we analyzed data of over 1,000 children from the Adolescent Brain Cognitive Development (ABCD) Study to examine whether monolinguals and multilinguals differ in executive function, functional brain connectivity, and brain-behavior associations. We observed significantly better performance from multilingual children than monolinguals in working-memory tasks. In one finding, we were able to classify multilinguals from monolinguals using only their whole-brain functional connectome at rest and during an emotional n-back task. Compared to monolinguals, the multilingual group had different functional connectivity mainly in the occipital lobe and subcortical areas during the emotional n-back task and in the occipital lobe and prefrontal cortex at rest. In contrast, we did not find any differences in behavioral performance and functional connectivity when performing a stop-signal task. As a second finding, we investigated the degree to which behavior is reflected in the brain by implementing a connectome-based behavior prediction approach. The multilingual group showed a significant correlation between observed and connectome-predicted individual working-memory performance scores, while the monolingual group did not show any correlations. Overall, our observations suggest that multilingualism enhances executive function and reliably modulates the corresponding brain functional connectome, distinguishing multilinguals from monolinguals even at the developmental stage.


Asunto(s)
Conectoma/métodos , Función Ejecutiva/fisiología , Multilingüismo , Adolescente , Encéfalo/fisiología , Mapeo Encefálico/métodos , Niño , Cognición/fisiología , Femenino , Predicción/métodos , Humanos , Imagen por Resonancia Magnética , Masculino , Memoria a Corto Plazo , Corteza Prefrontal
14.
J Neurosci ; 41(35): 7403-7419, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34253629

RESUMEN

In everyday life, we have no trouble categorizing objects varying in position, size, and orientation. Previous fMRI research shows that higher-level object processing regions in the human lateral occipital cortex may link object responses from different affine states (i.e., size and viewpoint) through a general linear mapping function capable of predicting responses to novel objects. In this study, we extended this approach to examine the mapping for both Euclidean (e.g., position and size) and non-Euclidean (e.g., image statistics and spatial frequency) transformations across the human ventral visual processing hierarchy, including areas V1, V2, V3, V4, ventral occipitotemporal cortex, and lateral occipitotemporal cortex. The predicted pattern generated from a linear mapping function could capture a significant amount of the changes associated with the transformations throughout the ventral visual stream. The derived linear mapping functions were not category independent as performance was better for the categories included than those not included in training and better between two similar versus two dissimilar categories in both lower and higher visual regions. Consistent with object representations being stronger in higher than in lower visual regions, pattern selectivity and object category representational structure were somewhat better preserved in the predicted patterns in higher than in lower visual regions. There were no notable differences between Euclidean and non-Euclidean transformations. These findings demonstrate a near-orthogonal representation of object identity and these nonidentity features throughout the human ventral visual processing pathway with these nonidentity features largely untangled from the identity features early in visual processing.SIGNIFICANCE STATEMENT Presently we still do not fully understand how object identity and nonidentity (e.g., position, size) information are simultaneously represented in the primate ventral visual system to form invariant representations. Previous work suggests that the human lateral occipital cortex may be linking different affine states of object representations through general linear mapping functions. Here, we show that across the entire human ventral processing pathway, we could link object responses in different states of nonidentity transformations through linear mapping functions for both Euclidean and non-Euclidean transformations. These mapping functions are not identity independent, suggesting that object identity and nonidentity features are represented in a near rather than a completely orthogonal manner.


Asunto(s)
Mapeo Encefálico , Lóbulo Occipital/fisiología , Reconocimiento Visual de Modelos/fisiología , Lóbulo Temporal/fisiología , Corteza Visual/fisiología , Vías Visuales/fisiología , Adolescente , Adulto , Animales , Reconocimiento Facial/fisiología , Femenino , Artículos Domésticos , Humanos , Imagen por Resonancia Magnética , Masculino , Adulto Joven
15.
J Cogn Neurosci ; 33(11): 2279-2296, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34272957

RESUMEN

What is the neural basis of individual differences in the ability to hold information in long-term memory (LTM)? Here, we first characterize two whole-brain functional connectivity networks based on fMRI data acquired during an n-back task that robustly predict individual differences in two important forms of LTM, recognition and recollection. We then focus on the recognition memory model and contrast it with a working memory model. Although functional connectivity during the n-back task also predicts working memory performance and the two networks have some shared components, they are also largely distinct from each other: The recognition memory model performance remains robust when we control for working memory, and vice versa. Functional connectivity only within regions traditionally associated with LTM formation, such as the medial temporal lobe and those that show univariate subsequent memory effect, have little predictive power for both forms of LTM. Interestingly, the interactions between these regions and other brain regions play a more substantial role in predicting recollection memory than recognition memory. These results demonstrate that individual differences in LTM are dependent on the configuration of a whole-brain functional network including but not limited to regions associated with LTM during encoding and that such a network is separable from what supports the retention of information in working memory.


Asunto(s)
Individualidad , Memoria a Largo Plazo , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Humanos , Imagen por Resonancia Magnética , Memoria a Corto Plazo
16.
Brain Behav ; 11(8): e02105, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34142458

RESUMEN

INTRODUCTION: Working memory is a critical cognitive ability that affects our daily functioning and relates to many cognitive processes and clinical conditions. Episodic memory is vital because it enables individuals to form and maintain their self-identities. Our study analyzes the extent to which whole-brain functional connectivity observed during completion of an N-back memory task, a common measure of working memory, can predict both working memory and episodic memory. METHODS: We used connectome-based predictive models (CPMs) to predict 502 Human Connectome Project (HCP) participants' in-scanner 2-back memory test scores and out-of-scanner working memory test (List Sorting) and episodic memory test (Picture Sequence and Penn Word) scores based on functional magnetic resonance imaging (fMRI) data collected both during rest and N-back task performance. We also analyzed the functional brain connections that contributed to prediction for each of these models. RESULTS: Functional connectivity observed during N-back task performance predicted out-of-scanner List Sorting scores and to a lesser extent out-of-scanner Picture Sequence scores, but did not predict out-of-scanner Penn Word scores. Additionally, the functional connections predicting 2-back scores overlapped to a greater degree with those predicting List Sorting scores than with those predicting Picture Sequence or Penn Word scores. Functional connections with the insula, including connections between insular and parietal regions, predicted scores across the 2-back, List Sorting, and Picture Sequence tasks. CONCLUSIONS: Our findings validate functional connectivity observed during the N-back task as a measure of working memory, which generalizes to predict episodic memory to a lesser extent. By building on our understanding of the predictive power of N-back task functional connectivity, this work enhances our knowledge of relationships between working memory and episodic memory.


Asunto(s)
Conectoma , Memoria Episódica , Encéfalo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Memoria a Corto Plazo
17.
Cognition ; 212: 104714, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33971460

RESUMEN

What determines how well people remember images? Most past research has explored properties of the people doing the remembering - such as their age, emotional state, or individual capacity. However, recent work has also characterized memorability - the likelihood of an image being remembered across observers. But what makes some images more memorable than others? Part of the answer must surely involve the meanings of the images, but here we ask whether this is the entire story: is there also purely visual memorability, driven not by semantic content but by perceptual features per se? We isolated visual memorability in an especially direct manner - by eliminating semantic content while retaining many visual properties. We did so by transforming a set of natural scene images using phase scrambling, and then testing memorability for both intact and scrambled images in independent samples. Across several experiments, observers saw sequences of images and responded anytime they saw a repeated image. We found reliable purely visual memorability at the temporal scales of both short-term memory (2-15 s) and longer-term memory (several minutes), and this could not be explained by the extent to which people could generate semantic labels for some scrambled images. Collectively, these results suggest that the memorability of images is a function not only of what they mean, but also of how they look in the first place.


Asunto(s)
Memoria a Largo Plazo , Semántica , Emociones , Humanos , Memoria a Corto Plazo , Recuerdo Mental
18.
PLoS Comput Biol ; 16(12): e1008457, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33270655

RESUMEN

The extent to which brain functions are localized or distributed is a foundational question in neuroscience. In the human brain, common fMRI methods such as cluster correction, atlas parcellation, and anatomical searchlight are biased by design toward finding localized representations. Here we introduce the functional searchlight approach as an alternative to anatomical searchlight analysis, the most commonly used exploratory multivariate fMRI technique. Functional searchlight removes any anatomical bias by grouping voxels based only on functional similarity and ignoring anatomical proximity. We report evidence that visual and auditory features from deep neural networks and semantic features from a natural language processing model, as well as object representations, are more widely distributed across the brain than previously acknowledged and that functional searchlight can improve model-based similarity and decoding accuracy. This approach provides a new way to evaluate and constrain computational models with brain activity and pushes our understanding of human brain function further along the spectrum from strict modularity toward distributed representation.


Asunto(s)
Vías Auditivas , Mapeo Encefálico/métodos , Encéfalo/fisiología , Semántica , Vías Visuales , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética/métodos , Modelos Teóricos , Procesamiento de Lenguaje Natural
19.
Neuroimage ; 212: 116684, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32114151

RESUMEN

Real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback is a non-invasive, non-pharmacological therapeutic tool that may be useful for training behavior and alleviating clinical symptoms. Although previous work has used rt-fMRI to target brain activity in or functional connectivity between a small number of brain regions, there is growing evidence that symptoms and behavior emerge from interactions between a number of distinct brain areas. Here, we propose a new method for rt-fMRI, connectome-based neurofeedback, in which intermittent feedback is based on the strength of complex functional networks spanning hundreds of regions and thousands of functional connections. We first demonstrate the technical feasibility of calculating whole-brain functional connectivity in real-time and provide resources for implementing connectome-based neurofeedback. We next show that this approach can be used to provide accurate feedback about the strength of a previously defined connectome-based model of sustained attention, the saCPM, during task performance. Although, in our initial pilot sample, neurofeedback based on saCPM strength did not improve performance on out-of-scanner attention tasks, future work characterizing effects of network target, training duration, and amount of feedback on the efficacy of rt-fMRI can inform experimental or clinical trial designs.


Asunto(s)
Atención/fisiología , Encéfalo/fisiología , Conectoma/métodos , Neurorretroalimentación/métodos , Neurorretroalimentación/fisiología , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Proyectos Piloto
20.
Proc Natl Acad Sci U S A ; 117(7): 3797-3807, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32019892

RESUMEN

The ability to sustain attention differs across people and changes within a single person over time. Although recent work has demonstrated that patterns of functional brain connectivity predict individual differences in sustained attention, whether these same patterns capture fluctuations in attention within individuals remains unclear. Here, across five independent studies, we demonstrate that the sustained attention connectome-based predictive model (CPM), a validated model of sustained attention function, generalizes to predict attentional state from data collected across minutes, days, weeks, and months. Furthermore, the sustained attention CPM is sensitive to within-subject state changes induced by propofol as well as sevoflurane, such that individuals show functional connectivity signatures of stronger attentional states when awake than when under deep sedation and light anesthesia. Together, these results demonstrate that fluctuations in attentional state reflect variability in the same functional connectivity patterns that predict individual differences in sustained attention.


Asunto(s)
Atención , Encéfalo/fisiología , Adolescente , Adulto , Encéfalo/diagnóstico por imagen , Conectoma , Función Ejecutiva , Femenino , Humanos , Individualidad , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Factores de Tiempo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA