RESUMEN
The increasing spread of mosquito vectors has made mosquito-borne arboviral diseases a global threat to public health, leading to the urgent need for effective population control methods. Strategies based in the intracellular bacterium Wolbachia Hertig, 1936 are considered environmentally friendly, safe for humans, and potentially cost-effective for controlling arboviral diseases. To minimize undesirable side effects, it is relevant to assess whether Wolbachia is present in the area and understand the diversity associated with native infections before implementing these strategies. With this purpose, we investigated Wolbachia infection status, diversity, and prevalence in populations of Aedes albifasciatus (Macquart, 1838), Aedes fluviatilis (Lutz, 1904), and hybrids of the Culex pipiens (Linnaeus, 1758) complex from Argentina. Aedes albifasciatus and C. pipiens complex samples were collected in the province of Buenos Aires, and A. fluviatilis in the province of Misiones. Aedes albifasciatus was found to be uninfected, while infections with strains wFlu and wPip were detected in A. fluviatilis and hybrids of the C. pipiens complex, respectively. All strains were fixed or close to fixation and clustered within supergroup B. These finding provides valuable information on Wolbachia strains found in natural mosquito populations in Argentina that might be used in heterologous infections in the future or be considered when designing control strategies based on Wolbachia infection.
Asunto(s)
Aedes , Wolbachia , Wolbachia/aislamiento & purificación , Wolbachia/genética , Animales , Argentina , Aedes/microbiología , Aedes/virología , Culex/microbiología , Mosquitos Vectores/microbiología , FemeninoRESUMEN
Diseases caused by flaviviruses are a major public health burden across the world. In the past decades, South America has suffered dengue epidemics, the re-emergence of yellow fever and St. Louis encephalitis viruses, and the introduction of West Nile and Zika viruses. Many insect-specific flaviviruses (ISFs) that cannot replicate in vertebrate cells have recently been described. In this study, we analyzed field-collected mosquito samples from six different ecoregions of Argentina to detect flaviviruses. We did not find any RNA belonging to pathogenic flaviviruses or ISFs in adults or immature stages. However, flaviviral-like DNA similar to flavivirus NS5 region was detected in 83-100% of Aedes aegypti (L.). Despite being previously described as an ancient element in the Ae. aegypti genome, the flaviviral-like DNA sequence was not detected in all Ae. aegypti samples and sequences obtained did not form a monophyletic group, possibly reflecting the genetic diversity of mosquito populations in Argentina.
Asunto(s)
Aedes/virología , ADN Viral/análisis , Flavivirus/aislamiento & purificación , Animales , Argentina , Flavivirus/genéticaRESUMEN
Aedes aegypti (L.) (Diptera: Culicidae) is a vector of many medically significant viruses in the Americas, including dengue virus, chikungunya virus, and Zika virus. Traits such as longevity, fecundity, and feeding behavior contribute to the ability of Ae. aegypti to serve as a vector of these pathogens. Both local environmental factors and population genetics could contribute to variability in these traits. We performed a comparative study of Ae. aegypti populations from four geographically and environmentally distinct collection sites in Argentina in which the cohorts from each population were held at temperature values simulating a daily cycle, with an average of 25°C in order to identify the influence of population on life-history traits. In addition, we performed the study of the same populations held at a daily temperature cycle similar to that of the surveyed areas. According to the results, Aguaray is the most outstanding population, showing features that are important to achieve high fitness. Whereas La Plata gathers features consistent with low fitness. Iguazu was outstanding in blood-feeding rate while Posadas's population showed intermediate values. Our results also demonstrate that climate change could differentially affect unique populations, and that these differences have implications for the capacity for Ae. aegypti to act as vectors for medically important arboviruses.
Asunto(s)
Adaptación Biológica , Aedes , Rasgos de la Historia de Vida , Temperatura , Animales , Argentina , Femenino , Reproducción , Razón de MasculinidadRESUMEN
Aedes albopictus (Diptera: Culicidae) is an invasive mosquito, native to Asia, that has expanded its range worldwide. It is considered to be a public health threat as it is a competent vector of viruses of medical importance, including dengue, chikungunya, and Zika. Despite its medical importance there is almost no information on biologically important traits of Ae. albopictus in Argentina. We studied life cycle traits, demographic parameters and analyzed the competence of this mosquito as a virus vector. In addition, we determined the prevalence of Wolbachia strains in Ae. albopictus as a first approach to investigate the potential role of this bacteria in modulating vector competence for arboviruses. We observed low hatch rates of eggs, which led to a negative growth rate. We found that Ae. albopictus individuals were infected with Wolbachia in the F1 but while standard superinfection with wAlbA and wAlbB types was found in 66.7% of the females, 16.7% of the females and 62.5% of the males were single-infected with the wAlbB strain. Finally, despite high levels of infection and dissemination, particularly for chikungunya virus, Ae. albopictus from subtropical Argentina were found to be relatively inefficient vectors for transmission of both chikungunya and dengue viruses.