Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22270755

RESUMEN

We identified the co-infection of the SARS-CoV-2 Omicron and Delta variants in two epidemiologically unrelated patients with chronic kidney disease requiring haemodialysis. Both SARS-CoV-2 variants were co-circulating locally at the time of detection. Amplicon- and probe-based sequencing using short- and long-read technologies identified and quantified Omicron and Delta subpopulations in respiratory samples from the two patients. These findings highlight the importance of genomic surveillance in vulnerable populations.

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21267628

RESUMEN

Several Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) neutralising monoclonal antibodies (mAbs) have received emergency use authorisation by regulatory agencies for treatment and prevention of Coronavirus Disease 2019 (COVID-19), including in patients at risk for progression to severe disease. Here we report the persistence of viable SARS-CoV-2 in patients treated with sotrovimab and the rapid development of spike gene mutations that have been shown to confer high level resistance to sotrovimab in vitro. We highlight the need for SARS-CoV-2 genomic surveillance in at risk individuals to inform stewardship of mAbs use and prevent potential treatment failures.

3.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20153981

RESUMEN

BackgroundThe detection of SARS-CoV-2 by real-time polymerase chain reaction (PCR) in respiratory samples collected from persons recovered from COVID-19 does not necessarily indicate shedding of infective virions. By contrast, the isolation of SARS-CoV-2 using cell-based culture likely indicates infectivity, but there are limited data on the correlation between SARS-CoV-2 culture and PCR. Here we review our experience using SARS-CoV-2 culture to determine infectivity and safe de-isolation of COVID-19 patients. Methods195 patients with diverse severity of COVID-19 were tested (outpatients [n=178]), inpatients [n=12] and ICU [n=5]). SARS-CoV-2 PCR positive samples were cultured in Vero C1008 cells and inspected daily for cytopathic effect (CPE). SARS-CoV-2-induced CPE was confirmed by PCR of culture supernatant. Where no CPE was documented, PCR was performed on day four to confirm absence of virus replication. Cycle threshold (Ct) values of the day four PCR (Ctculture) and the PCR of the original clinical sample (Ctsample) were compared, and positive cultures were defined as a Ctsample - Ctculture value of [≥]3. FindingsOf 234 samples collected, 228 (97%) were from the upper respiratory tract. SARS-CoV-2 was only successfully isolated from samples with Ctsample values <32, including in 28/181 (15%), 19/42 (45%) and 9/11 samples (82%) collected from outpatients, inpatients and ICU patients, respectively. The mean duration from symptom onset to culture positivity was 4.5 days (range 0-18 days). SARS-CoV-2 was significantly more likely to be isolated from samples collected from inpatients (p<0.001) and ICU patients (p<0.0001) compared with outpatients, and in samples with lower Ctsample values. ConclusionSARS-CoV-2 culture may be used as a surrogate marker for infectivity and inform de-isolation protocols.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA