Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 667: 54-63, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38615623

RESUMEN

Type 1 diabetes mellitus (T1DM) is a chronic disease affecting millions worldwide. Insulin therapy is currently the golden standard for treating T1DM; however, it does not restore the normal glycaemic balance entirely, which increases the risk of secondary complications. Beta-cell therapy may be a possible way of curing T1DM and has already shown promising results in the clinic. However, low retention rates, poor cell survival, and limited therapeutic potential are ongoing challenges, thus increasing the need for better cell encapsulation devices. This study aimed to develop a mechanically reinforced vascular endothelial growth factor (VEGF)-delivering encapsulation device suitable for beta cell encapsulation and transplantation. Poly(l-lactide-co-ε-caprolactone) (PLCL)/gelatin methacryloyl (GelMA)/alginate coaxial nanofibres were produced using electrospinning and embedded in an alginate hydrogel. The encapsulation device was physically and biologically characterised and was found to be suitable for INS-1E beta cell encapsulation, vascularization, and transplantation in terms of its biocompatibility, porosity, swelling ratio and mechanical properties. Lastly, VEGF was incorporated into the hydrogel and the release kinetics and functional studies revealed a sustained release of bioactive VEGF for at least 14 days, making the modified alginate system a promising candidate for improving the beta cell survival after transplantation.


Asunto(s)
Alginatos , Gelatina , Hidrogeles , Células Secretoras de Insulina , Factor A de Crecimiento Endotelial Vascular , Hidrogeles/química , Alginatos/química , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/citología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/administración & dosificación , Gelatina/química , Animales , Poliésteres/química , Ratas , Supervivencia Celular/efectos de los fármacos , Humanos , Diabetes Mellitus Tipo 1/terapia , Metacrilatos/química , Inductores de la Angiogénesis/química , Inductores de la Angiogénesis/farmacología , Inductores de la Angiogénesis/administración & dosificación , Propiedades de Superficie
2.
Biomater Adv ; 146: 213284, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36682202

RESUMEN

Major challenges in developing implanted neural stimulation devices are the invasiveness, complexity, and cost of the implantation procedure. Here, we report an injectable, nanofibrous 2D flexible hydrogel sheet-based neural stimulation device that can be non-invasively implanted via syringe injection for optoelectrical and biochemical dual stimulation of neuron. Specifically, methacrylated gelatin (GelMA)/alginate hydrogel nanofibers were mechanically reinforced with a poly(lactide-co-ε-caprolactone) (PLCL) core by coaxial electrospinning. The lubricant hydrogel shell enabled not only injectability, but also facile incorporation of functional nanomaterials and bioactives. The nanofibers loaded with photocatatlytic g-C3N4/GO nanoparticles were capable of stimulating neural cells via blue light, with a significant 36.3 % enhancement in neurite extension. Meanwhile, the nerve growth factor (NGF) loaded nanofibers supported a sustained release of NGF with well-maintained function to biochemically stimulate neural differentiation. We have demonstrated the capability of an injectable, hydrogel nanofibrous, neural stimulation system to support neural stimulation both optoelectrically and biochemically, which represents crucial early steps in a larger effort to create a minimally invasive system for neural stimulation.


Asunto(s)
Nanofibras , Hidrogeles/farmacología , Factor de Crecimiento Nervioso/farmacología , Neuronas , Prótesis e Implantes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA