Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Eur J Pharmacol ; 738: 101-10, 2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-24726874

RESUMEN

Obesity has become a major public health problem of global significance. Today, aspirin remains the most commonly used medication for the treatment of pyrexia, pain, inflammation and antiplatelet. The present study aims at evaluating the possible existence of a putative p53-dependent pathway underlying the aspirin-induced inhibition of adipogenesis. Cell migration assay was identified by the ability to migrate through Transwell insert. Oil Red O staining was employed to quantify adipose accumulation. The concentration of glucose and triglyceride were measured by using assay kits. The expression levels of several master regulatory molecules controlling various signal pathways were monitored using the immunoblotting techniques. Aspirin significantly inhibited preadipocyte migration and adipose accumulation. The p53-p21 signaling and the expression of differentiation marker glycerol-3-phosphate dehydrogenase were increased in a dose-dependent manner. It indicated that aspirin induced adipocyte differentiation through p53-p21 pathway. The oncogenic ERK 1/2 MAPK signaling was induced, whereas, the expression of adipogenic markers peroxisome proliferator-activated receptor γ (PPARγ), adipocyte fatty acid-binding protein (A-FABP) and inflammatory factors cyclooxygenase-2 (Cox-2), tumor necrosis factor α (TNFα) and inducible nitric oxide synthase (iNOS) were inhibited. Aspirin negatively regulated the pentose phosphate pathway (PPP) by inhibiting the expression of rate-limiting enzyme glucose-6-phosphate dehydrogenase. Knockdown the expression of oncogenic ERK 1/2 MAPK by using 10 µM PD98059 significantly increased triglyceride synthesis, adipose accumulation and activated PPP, however, decreased glucose uptake. Diverted the glucose flux to PPP, rather than increased glucose uptake, was associated with adipogenesis. Down-regulated the expression of tumor suppressor p53 by 10 µM pifithrin-α (PFTα) alone had no effect on adipose accumulation. However, administration of aspirin accompanied with PFTα abolished aspirin-induced inhibition of adipogenesis. We demonstrated that aspirin-induced inhibition of adipogenesis was p53-dependent and associated with inactivation of PPP. Blockade PPP may be a novel strategy for obesity prevention and therapy. Moreover, when use aspirin in therapeutic strategy, the p53 status should be considered.


Asunto(s)
Adipogénesis/efectos de los fármacos , Aspirina/farmacología , Vía de Pentosa Fosfato/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Células 3T3-L1 , Adipocitos/citología , Adipocitos/efectos de los fármacos , Animales , Biomarcadores/metabolismo , Movimiento Celular/efectos de los fármacos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Proteína Quinasa 1 Activada por Mitógenos/deficiencia , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/deficiencia , Proteína Quinasa 3 Activada por Mitógenos/genética
2.
Phytother Res ; 27(8): 1154-61, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22976055

RESUMEN

Vitexin, identified as apigenin-8-C-D-glucopyranoside, a natural flavonoid compound found in certain herbs such as hawthorn herb, has been reported to exhibit anti-oxidative, anti-inflammatory, anti-metastatic and antitumor properties. The aim of this study was to investigate the possible existence of p53-dependent pathway underlying vitexin-induced metastasis and apoptosis in human oral cancer cells, OC2 cells. Vitexin decreased cell viability significantly. Meanwhile, the expression of tumor suppressor p53 and a small group of its downstream genes, p21(WAF1) and Bax, were upregulated. The p53 inhibitor pifithrin-α (PFT-α) knockdown of the signaling of p53 led vitexin to lose its antitumor effect and inhibited the expression of p53 downstream genes, p2(WAF1) and Bax. Vitexin had anti-metastatic potential accompanied with increasing plasminogen activator inhibitor 1 (PAI-1) accumulation and decreasing matrix metalloproteinase-2 expression. Our present study evidenced, by using p53 inhibitor PFT-α, PAI-1 and peroxisome proliferator-activated receptor γ are downstream genes of p53 in vitexin-induced signaling. MAPK inhibitor PD98059 decreased the OC2 cells viability significantly. The expression of p53 and its downstream genes p21(WAF1) and Bax were enhanced by blocking the activation of p42/p44 MAPK in response to treatment with vitexin. Moreover, p42/p44 MAPK played a negative role in p53-dependent metastasis and apoptosis. We give evidence for the first time that the novel p53-dependent metastatic and apoptotic pathway induced by vitexin in human oral cancer OC2 cells.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apigenina/farmacología , Neoplasias de la Boca/patología , Proteína p53 Supresora de Tumor/metabolismo , Apoptosis/efectos de los fármacos , Apoptosis/genética , Benzotiazoles/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Flavonoides/farmacología , Humanos , Metaloproteinasa 2 de la Matriz/metabolismo , Neoplasias de la Boca/genética , PPAR gamma/metabolismo , Inhibidor 1 de Activador Plasminogénico/metabolismo , Transducción de Señal/efectos de los fármacos , Tolueno/análogos & derivados , Tolueno/farmacología , Regulación hacia Arriba , Proteína X Asociada a bcl-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA