Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-31178651

RESUMEN

We present experimental and numerical studies on a method to mitigate screening current-induced field (SCF) for NI REBCO coil. The SCF is the major field error to incorporate a REBCO insert for a high field LTS/HTS magnet. The field-shaking technique is going to be used to mitigate the SCF of 800-MHz REBCO insert magnet (H800) for MIT 1.3-GHz LTS/HTS NMR magnet (1.3 G). The field-shaking using 500-MHz LTS background magnet generates the SCF in H800, due to huge self and mutual inductances of them. In this paper, we tested the effect of the induced current in the NI REBCO coil on the field-shaking technique to mitigate the SCF. The amount of the induced current was decided by the NI REBCO coil status; the open- or closed-loop coil. We performed the three cases of experimental tests and analyzed them. From the test results, we may conclude that we need to limit the ramp rate of L500 during the field-shaking, to minimize the induced current in the HTS insert which consists of the NI REBCO coil.

2.
Artículo en Inglés | MEDLINE | ID: mdl-31130801

RESUMEN

We present assembly and test results of a 3-nested-coil 800-MHz (18.8 T) REBCO insert (H800) for the MIT 1.3 GHz LTS/HTS NMR magnet currently under completion. Each of the three H800 coils is a stack of no-insulation (NI) REBCO double-pancake coils (DPs). The innermost 8.7-T Coil 1 (26 DPs) was completed by mid-2016; the middle 5.6-T Coil 2 (32 DPs) was complet-ed in mid-2017; while the outermost 4.5-T Coil 3 (38 DPs) was completed in early 2018. Coils 1, 2 & 3 were assembled together in early 2018 as a 3-nested-coil, the H800, and tested, first in liquid nitrogen to a power supply current of 20 A, followed by testing in liquid helium to a power supply current of 251.3 A, the H800's design operating current. After roughly five minutes settling time at 251.3 A, the H800 quenched. In this paper we examine probable sources of quench initiation and simulate ensuing quench behavior. Remedial efforts to minimize the tendency towards quenching in the H800 are presented and discussed.

3.
Artículo en Inglés | MEDLINE | ID: mdl-31031553

RESUMEN

We present post-quench analyses of the MIT 800-MHz REBCO insert magnet (H800), unexpectedly quenched during operation in March 2018, and design study of a new 800-MHz HTS insert (H800N). The as-wound H800 was supposed to contribute 18.7 T and, with an LTS background magnet (L500), produce 30.5 T corresponding to a proton resonance frequency of 1.3 GHz. The H800 was operated at 4.2 K in liquid helium and, about 5 minutes after the power supply reached a target operating current of 251.3 A, it experienced a quench. Because the damage in the H800 was more widespread than it first appeared, we decided to design and build a new insert magnet, H800N. In designing H800N, we try to eliminate unanticipated flaws in our H800 design. H800N is to be more stable not to quench and more reliably survive against quench without permanent damage by: 1) adopting a single solenoid structure composed of 40 stacked double pancake coils with improved cross-over sections; 2) enhancing thermal stability; and 3) reducing excessive current margin for quench protection.

4.
Artículo en Inglés | MEDLINE | ID: mdl-31031554

RESUMEN

We present a design study of a liquid-helium (LHe)-free 23.5-T, ϕ25-mm RT-bore REBCO magnet for high-resolution 1-GHz microcoil nuclear magnetic resonance (NMR) spectroscopy. A microcoil NMR magnet is compact and thus its cost will be less by nearly an order of magnitude than that of the standard NMR magnet, and placeable on a bench, thereby resulting in a large saving in space. In addition, LHe-free operation enables the user to be independent from a cooling source in short supply. This paper includes: 1) magnet design and conductor requirement specification; 2) conceptual design of a full-scale tabletop LHe-free 1-GHz NMR magnet; and 3) design of a 10-K operating REBCO 23.5-T magnet prototype with a ϕ20-mm cold-bore. This small-size magnet prototype will be built and tested by 2020 for validation of performance and manufacturing challenges such as splices between coils. The paper concludes with discussion of stray-field shielding methods and a screening-current-inducing field (SCF) effect.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 66(1 Pt 2): 017201, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12241514

RESUMEN

The characteristic features of the collapse of the ground state in trapped one-component attractive Bose-Einstein condensates are studied by applying the catastrophe theory. From numerically obtained stable and unstable solutions of the Gross-Pitaevskii equation, we derive the catastrophe function defining the stability of the stationary points on the Gross-Pitaevskii energy functional. The bifurcation diagram and the universal scaling laws stemming from the catastrophe function show quantitative agreement with the numerical results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA