Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 20(13)2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32630024

RESUMEN

The biomechanics of a golf swing have been of interest to golfers, instructors, and biomechanists. In addition to the complexity of the three-dimensional (3D) dynamics of multi-segments of body, the closed-chain body posture as a result of both hands holding a club together makes it difficult to fully analyze the 3D kinetics of a golf swing. To identify the hand-grip joint force and torque applied by each hand, we directly measured the 3D internal grip force of nine registered professional golfers using an instrumented grip. A six-axis force-torque sensor was connected to a custom-made axially separated grip, which was then connected to a driver shaft using a manufactured screw thread. Subjects participated in two sessions of data collection featuring five driver swings with both a regular and customized sensor-embedded grip, respectively. Internal grip force measurement and upper limb kinematics were used to calculate the joint force and torque of the nine-linkage closed-chain of the upper limb and club using 3D inverse dynamics. Direct measurement of internal grip forces revealed a threefold greater right-hand torque application compared to the left hand, and counterforce by both hands was also found. The joint force and torque of the left arm tended to precede that of the right arm, the majority of which had peaks around the impact and showed a larger magnitude than that of the left arm. Due to the practical challenge of measuring internal force, heuristic estimation methods based on club kinematics showed fair approximation. Our results suggest that measuring the internal forces of the closed-chain posture could identify redundant joint kinetics and further propose a heuristic approximation.


Asunto(s)
Golf/fisiología , Fuerza de la Mano , Mano/fisiología , Extremidad Superior/fisiología , Fenómenos Biomecánicos , Humanos , Cinética , Torque
2.
Sensors (Basel) ; 17(11)2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-29112125

RESUMEN

Spinal disease is a common yet important condition that occurs because of inappropriate posture. Prevention could be achieved by continuous posture monitoring, but most measurement systems cannot be used in daily life due to factors such as burdensome wires and large sensing modules. To improve upon these weaknesses, we developed comfortable "smart wear" for posture measurement using conductive yarn for circuit patterning and a flexible printed circuit board (FPCB) for interconnections. The conductive yarn was made by twisting polyester yarn and metal filaments, and the resistance per unit length was about 0.05 Ω/cm. An embroidered circuit was made using the conductive yarn, which showed increased yield strength and uniform electrical resistance per unit length. Circuit networks of sensors and FPCBs for interconnection were integrated into clothes using a computer numerical control (CNC) embroidery process. The system was calibrated and verified by comparing the values measured by the smart wear with those measured by a motion capture camera system. Six subjects performed fixed movements and free computer work, and, with this system, we were able to measure the anterior/posterior direction tilt angle with an error of less than 4°. The smart wear does not have excessive wires, and its structure will be optimized for better posture estimation in a later study.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA