Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neuropsychiatr Dis Treat ; 10: 183-91, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24511233

RESUMEN

Alzheimer's disease (AD) and schizophrenia (SZ) are neurological disorders with overlapping symptomatology, including both cognitive deficits and behavioral disturbances. Current clinical treatments for both disorders have limited efficacy accompanied by dose-limiting side effects, and ultimately fail to adequately address the broad range of symptoms observed. Novel therapeutic options for AD and SZ are needed to better manage the spectrum of symptoms with reduced adverse-effect liability. Substantial evidence suggests that activation of muscarinic acetylcholine receptors (mAChRs) has the potential to treat both cognitive and psychosis-related symptoms associated with numerous central nervous system (CNS) disorders. However, use of nonselective modulators of mAChRs is hampered by dose-limiting peripheral side effects that limit their clinical utility. In order to maintain the clinical efficacy without the adverse-effect liability, efforts have been focused on the discovery of compounds that selectively modulate the centrally located M1 and M4 mAChR subtypes. Previous drug discovery attempts have been thwarted by the highly conserved nature of the acetylcholine site across mAChR subtypes. However, current efforts by our laboratory and others have now focused on modulators that bind to allosteric sites on mAChRs, allowing these compounds to display unprecedented subtype selectivity. Over the past couple of decades, the discovery of small molecules capable of selectively targeting the M1 or M4 mAChR subtypes has allowed researchers to elucidate the roles of these receptors in regulating cognitive and behavioral disturbances in preclinical animal models. Here, we provide an overview of these promising preclinical and clinical studies, which suggest that M1- and M4-selective modulators represent viable novel targets with the potential to successfully address a broad range of symptoms observed in patients with AD and SZ.

2.
Biol Psychiatry ; 69(7): 668-74, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21035790

RESUMEN

BACKGROUND: Overconsumption of calorically dense foods contributes substantially to the current obesity epidemic. The adiposity hormone leptin has been identified as a potential modulator of reward-induced feeding. The current study asked whether leptin signaling within the lateral hypothalamus (LH) and midbrain is involved in effort-based responding for food rewards and/or the modulation of mesolimbic dopamine. METHODS: The contribution of endogenous leptin signaling for food motivation and mesolimbic dopamine tone was examined after viral-mediated reduction of the leptin receptor within LH and midbrain neurons in male rats. RESULTS: Knockdown of leptin receptors selectively in the LH caused increased body weight, caloric consumption, and body fat in rats maintained on a calorically dense diet. Knockdown of leptin receptors selectively in midbrain augmented progressive ratio responding for sucrose and restored high-fat, diet-induced suppression of dopamine content in the nucleus accumbens. CONCLUSIONS: In summary, endogenous leptin signaling in the hypothalamus restrains the overconsumption of calorically dense foods and the consequent increase in body mass, whereas leptin action in the midbrain regulates effort-based responding for food rewards and mesolimbic dopamine tone. These data highlight the ability of leptin to regulate overconsumption of palatable foods and food motivation through pathways that mediate energy homeostasis and reward, respectively.


Asunto(s)
Encéfalo/metabolismo , Metabolismo Energético/efectos de los fármacos , Proteínas Fluorescentes Verdes/efectos de los fármacos , Leptina/farmacología , Motivación/efectos de los fármacos , Animales , Peso Corporal/efectos de los fármacos , Encéfalo/anatomía & histología , Encéfalo/efectos de los fármacos , Condicionamiento Operante/efectos de los fármacos , Grasas de la Dieta/administración & dosificación , Dopamina/metabolismo , Metabolismo Energético/fisiología , Proteínas Fluorescentes Verdes/genética , Masculino , Vías Nerviosas/fisiología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Long-Evans , Receptores de Leptina/genética , Factor de Transcripción STAT3/metabolismo
3.
Physiol Behav ; 103(1): 39-43, 2011 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-21036184

RESUMEN

The ability to predict a particular meal is achieved in part by learned associations with stimuli that predict nutrient availability. Ghrelin is an orexigenic peptide produced by both the gut and brain that rises before anticipated meals and it has been suggested that pre-prandial ghrelin increases may act as a signal to predict meal delivery. Here, we used wild type and ghrelin receptor deficient mice to test the hypothesis that ghrelin signaling is necessary for the processing of emotionally relevant stimuli, spatial learning and habituated feeding responses. We tested spatial and fear-related memory with the Morris water maze and step through passive avoidance tests, respectively and utilized food anticipatory activity to monitor habituated feeding responses following two weeks of a meal feeding paradigm. Our results indicate that ghrelin signaling modulates spatial memory performance and is necessary for the development of food anticipatory activity. Collectively, these results suggest that ghrelin receptor signaling is necessary for adaptations in the anticipatory responses that accompany restricted feeding.


Asunto(s)
Conducta Alimentaria/fisiología , Hipocampo/fisiología , Receptores de Ghrelina/metabolismo , Transducción de Señal/fisiología , Análisis de Varianza , Animales , Conducta Animal , Peso Corporal/genética , Miedo , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/genética , Actividad Motora/fisiología , Tiempo de Reacción/genética , Receptores de Ghrelina/deficiencia , Transducción de Señal/genética , Factores de Tiempo
4.
Physiol Behav ; 102(5): 491-5, 2011 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-21172367

RESUMEN

The hypothalamic melanocortin system is known for its role in regulating energy homeostasis through it actions within hypothalamic brain centers. However, emerging evidence suggests that this system regulates addictive behaviors through signaling within mesolimbic neurons. Here, we hypothesized the melanocortin system modulates feeding behavior through its actions on mesolimbic neurons. In particular, we predicted that central administration of the melanocortin antagonist agouti-related peptide (AgRP) would activate midbrain dopamine neurons, increase mesolimbic dopamine turnover, and alter food seeking behaviors. We found that intraventricular administration of agouti-related peptide increased neuronal activation within midbrain dopamine neurons in addition to increasing dopamine turnover in the medial prefrontal cortex. Additionally, using the conditioned place preference paradigm to assay food seeking behavior, we report that central injection of agouti-related peptide attenuates the acquisition of a conditioned place preference for sucrose, but not high fat diet. These results suggest that the melanocortin system is capable of regulating mesocorticolimbic activity and food seeking behavior.


Asunto(s)
Proteína Relacionada con Agouti/farmacología , Conducta Alimentaria/fisiología , Melanocortinas/fisiología , Neuronas/fisiología , Núcleo Accumbens/metabolismo , Fragmentos de Péptidos/farmacología , Corteza Prefrontal/metabolismo , Área Tegmental Ventral/metabolismo , Proteína Relacionada con Agouti/administración & dosificación , Animales , Condicionamiento Psicológico/efectos de los fármacos , Grasas de la Dieta/farmacología , Dopamina/metabolismo , Conducta Alimentaria/efectos de los fármacos , Inyecciones Intraventriculares , Melanocortinas/efectos de los fármacos , Neuronas/metabolismo , Núcleo Accumbens/efectos de los fármacos , Fragmentos de Péptidos/administración & dosificación , Corteza Prefrontal/efectos de los fármacos , Ratas , Ratas Long-Evans , Sacarosa/farmacología , Área Tegmental Ventral/efectos de los fármacos
5.
Trends Endocrinol Metab ; 21(2): 68-74, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19818643

RESUMEN

Feeding for pleasure, or "non-homeostatic feeding", potentially contributes to the rapid development of obesity worldwide. Obesity is associated with an imbalance of regulatory hormones which normally act to maintain stable energy balance and body weight. The adiposity hormones insulin and leptin are two such signals elevated in obesity with the capacity to dampen feeding behavior through their action on hypothalamic circuits which regulate appetite and metabolism. Recent evidence suggests that both hormones achieve this degree of regulation by inhibiting the rewarding aspects of feeding behavior, perhaps by signaling within midbrain reward circuits. This review describes the capacity of both insulin and leptin to regulate reward-related behavior.


Asunto(s)
Insulina/fisiología , Leptina/fisiología , Recompensa , Animales , Regulación del Apetito/efectos de los fármacos , Regulación del Apetito/fisiología , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/fisiología , Conducta Alimentaria/efectos de los fármacos , Conducta Alimentaria/fisiología , Homeostasis/efectos de los fármacos , Homeostasis/fisiología , Humanos , Insulina/farmacología , Leptina/farmacología , Sistema Límbico/efectos de los fármacos , Sistema Límbico/fisiología , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA