Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(37): 25489-25498, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39215393

RESUMEN

Optical anisotropy is a fundamental attribute of some crystalline materials and is quantified via birefringence. A birefringent crystal gives rise to not only asymmetrical light propagation but also attenuation along two distinct polarizations, a phenomenon called linear dichroism (LD). Two-dimensional (2D) layered materials with high in-plane and out-of-plane anisotropy have garnered interest in this regard. Mithrene, a 2D metal-organic chalcogenate (MOCHA) compound, exhibits strong excitonic resonances due to its naturally occurring multiquantum well (MQW) structure and in-plane anisotropic response in the blue wavelength (∼400-500 nm) regime. The MQW structure and the large refractive indices of mithrene allow the hybridization of the excitons with photons to form self-hybridized exciton-polaritons in mithrene crystals with appropriate thicknesses. Here, we report the giant birefringence (∼1.01) and the tunable in-plane anisotropic response of mithrene, which stem from its low symmetry crystal structure and strong excitonic properties. We show that the LD in mithrene can be tuned by leveraging the anisotropic exciton-polariton formation via the cavity coupling effect, exhibiting giant in-plane LD (∼77.1%) at room temperature. Our results indicate that mithrene is a polaritonic birefringent material for polarization-sensitive nanophotonic applications in the short wavelength regime.

2.
Sci Adv ; 10(20): eadn8465, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758786

RESUMEN

Deep-blue perovskite light-emitting diodes (PeLEDs) of high purity are highly sought after for next-generation displays complying with the Rec. 2020 standard. However, mixed-halide perovskite materials designed for deep-blue emitters are prone to halide vacancies, which readily occur because of the low formation energy of chloride vacancies. This degrades bandgap instability and performance. Here, we propose a chloride vacancy-targeting passivation strategy using sulfonate ligands with different chain lengths. The sulfonate groups have a strong affinity for lead(II) ions, effectively neutralizing vacancies. Our strategy successfully suppressed phase segregation, yielding color-stable deep-blue PeLEDs with an emission peak at 461 nanometers and a maximum luminance (Lmax) of 2707 candela per square meter with external quantum efficiency (EQE) of 3.05%, one of the highest for Rec. 2020 standard-compliant deep-blue PeLEDs. We also observed a notable increase in EQE up to 5.68% at Lmax of 1978 candela per square meter with an emission peak at 461 nanometers by changing the carbon chain length.

3.
Nano Lett ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38593418

RESUMEN

Localized emission in atomically thin semiconductors has sparked significant interest as single-photon sources. Despite comprehensive studies into the correlation between localized strain and exciton emission, the impacts of charge transfer on nanobubble emission remains elusive. Here, we report the observation of core/shell-like localized emission from monolayer WSe2 nanobubbles at room temperature through near-field studies. By altering the electronic junction between monolayer WSe2 and the Au substrate, one can effectively adjust the semiconductor to metal junction from a Schottky to an Ohmic junction. Through concurrent analysis of topography, potential, tip-enhanced photoluminescence, and a piezo response force microscope, we attribute the core/shell-like emissions to strong piezoelectric potential aided by induced polarity at the WSe2-Au Schottky interface which results in spatial confinement of the excitons. Our findings present a new approach for manipulating charge confinement and engineering localized emission within atomically thin semiconductor nanobubbles. These insights hold implications for advancing the nano and quantum photonics with low-dimensional semiconductors.

4.
ACS Appl Mater Interfaces ; 13(31): 37323-37330, 2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34337932

RESUMEN

Highly efficient vacuum-deposited CsPbBr3 perovskite light-emitting diodes (PeLEDs) are demonstrated by introducing a separate polyethylene oxide (PEO) passivation layer. A CsPbBr3 film deposited on the PEO layer via thermal co-evaporation of CsBr and PbBr2 exhibits an almost 50-fold increase in photoluminescence quantum yield intensity compared to a reference sample without PEO. This enhancement is attributed to the passivation of interfacial defects of the perovskite, as evidenced by temperature-dependent photoluminescence measurements. However, direct application of PEO to an LED device is challenging because of the electrically insulating nature of PEO. This issue is solved by doping PEO layers with MgCl2. This strategy results in an enhanced luminance and external quantum efficiency (EQE) of up to 6887 cd m-2 and 7.6%, respectively. To the best of our knowledge, this is the highest EQE reported to date among vacuum-deposited PeLEDs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA