Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Hum Mol Genet ; 20(9): 1844-53, 2011 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-21325354

RESUMEN

Spinal muscular atrophy (SMA) is an inherited motor neuron disease caused by the mutation of the survival motor neuron 1 (SMN1) gene and deficiency of the SMN protein. Severe SMA mice have abnormal motor function and small, immature myofibers early in development suggesting that SMN protein deficiency results in retarded muscle growth. Insulin-like growth factor 1 (IGF-1) stimulates myoblast proliferation, induces myogenic differentiation and generates myocyte hypertrophy in vitro and in vivo. We hypothesized that increased expression of IGF-1 specifically in skeletal muscle would attenuate disease features of SMAΔ7 mice. SMAΔ7 mice overexpressing a local isoform of IGF-1 (mIGF-1) in muscle showed enlarged myofibers and a 40% increase in median survival compared with mIGF-1-negative SMA littermates (median survival = 14 versus 10 days, respectively, log-rank P = 0.025). Surprisingly, this was not associated with a significant improvement in motor behavior. Treatment of both mIGF-1(NEG) and mIGF-1(POS) SMA mice with the histone deacetylase inhibitor, trichostatin A (TSA), resulted in a further extension of survival and improved motor behavior, but the combination of mIGF-1 and TSA treatment was not synergistic. These results show that increased mIGF-1 expression restricted to muscle can modulate the phenotype of SMA mice indicating that therapeutics targeted to muscle alone should not be discounted as potential disease-modifying therapies in SMA. IGF-1 may warrant further investigation in mild SMA animal models and perhaps SMA patients.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular Espinal/metabolismo , Regulación hacia Arriba , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Actividad Motora , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/fisiopatología , Proteínas del Complejo SMN/genética , Proteínas del Complejo SMN/metabolismo
2.
Hum Mol Genet ; 18(17): 3145-52, 2009 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-19477958

RESUMEN

There is currently no treatment for the inherited motor neuron disease, spinal muscular atrophy (SMA). Severe SMA causes lower motor neuron loss, impaired myofiber development, profound muscle weakness and early mortality. Myostatin is a transforming growth factor-beta family member that inhibits muscle growth. Loss or blockade of myostatin signaling increases muscle mass and improves muscle strength in mouse models of primary muscle disease and in the motor neuron disease, amyotrophic lateral sclerosis. In this study, we evaluated the effects of blocking myostatin signaling in severe SMA mice (hSMN2/delta7SMN/mSmn(-/-)) by two independent strategies: (i) transgenic overexpression of the myostatin inhibitor follistatin and (ii) post-natal administration of a soluble activin receptor IIB (ActRIIB-Fc). SMA mice overexpressing follistatin showed little increase in muscle mass and no improvement in motor function or survival. SMA mice treated with ActRIIB-Fc showed minimal improvement in motor function, and no extension of survival compared with vehicle-treated mice. Together these results suggest that inhibition of myostatin may not be a promising therapeutic strategy in severe forms of SMA.


Asunto(s)
Atrofia Muscular Espinal/metabolismo , Miostatina/metabolismo , Receptores de Activinas Tipo II/administración & dosificación , Animales , Modelos Animales de Enfermedad , Regulación hacia Abajo , Femenino , Folistatina/genética , Folistatina/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Atrofia Muscular Espinal/tratamiento farmacológico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/fisiopatología , Miostatina/genética , Transducción de Señal
3.
J Neurosci ; 29(3): 842-51, 2009 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-19158308

RESUMEN

The motor neuron disease spinal muscular atrophy (SMA) causes profound muscle weakness that most often leads to early death. At autopsy, SMA is characterized by loss of motor neurons and muscle atrophy, but the initial cellular events that precipitate motor unit dysfunction and loss remain poorly characterized. Here, we examined the function and corresponding structure of neuromuscular junction (NMJ) synapses in a mouse model of severe SMA (hSMN2/delta7SMN/mSmn-/-). Surprisingly, most SMA NMJs remained innervated even late in the disease course; however they showed abnormal synaptic transmission. There was a two-fold reduction in the amplitudes of the evoked endplate currents (EPCs), but normal spontaneous miniature EPC (MEPC) amplitudes. These features in combination indicate reduced quantal content. SMA NMJs also demonstrated increased facilitation suggesting a reduced probability of vesicle release. By electron microscopy, we found a decreased density of synaptic vesicles that is likely to contribute to the reduced release probability. In addition to presynaptic defects, there were postsynaptic abnormalities. EPC and MEPC decay time constants were prolonged because of a slowed switch from the fetal acetylcholine receptor (AChR) gamma-subunit to the adult epsilon-subunit. There was also reduced size of AChR clusters and small myofibers, which expressed an immature pattern of myosin heavy chains. Together these results indicate that impaired synaptic vesicle release at NMJs in severe SMA is likely to contribute to failed postnatal maturation of motor units and muscle weakness.


Asunto(s)
Atrofia Muscular Espinal/patología , Unión Neuromuscular/inmunología , Unión Neuromuscular/fisiopatología , Vesículas Sinápticas/metabolismo , Factores de Edad , Análisis de Varianza , Animales , Animales Recién Nacidos , Desnervación Autonómica/métodos , Modelos Animales de Enfermedad , Estimulación Eléctrica , Ratones , Ratones Transgénicos , Microscopía Electrónica de Transmisión/métodos , Potenciales Postsinápticos Miniatura/fisiología , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/metabolismo , Atrofia Muscular Espinal/genética , Unión Neuromuscular/ultraestructura , Receptores Colinérgicos/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Vesículas Sinápticas/ultraestructura
4.
Ann Neurol ; 64(4): 465-70, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18661558

RESUMEN

Early treatment with the histone deacetylase inhibitor, trichostatin A, plus nutritional support extended median survival of spinal muscular atrophy mice by 170%. Treated mice continued to gain weight, maintained stable motor function, and retained intact neuromuscular junctions long after trichostatin A was discontinued. In many cases, ultimate decline of mice appeared to result from vascular necrosis, raising the possibility that vascular dysfunction is part of the clinical spectrum of severe spinal muscular atrophy. Early spinal muscular atrophy disease detection and treatment initiation combined with aggressive ancillary care may be integral to the optimization of histone deacetylase inhibitor treatment in human patients.


Asunto(s)
Inhibidores Enzimáticos/uso terapéutico , Ácidos Hidroxámicos/uso terapéutico , Atrofia Muscular Espinal/terapia , Apoyo Nutricional/métodos , Factores de Edad , Animales , Animales Recién Nacidos , Peso Corporal/efectos de los fármacos , Peso Corporal/fisiología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Ratones , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Necrosis , Análisis de Supervivencia , Proteína 1 para la Supervivencia de la Neurona Motora/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA