Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pediatr Res ; 93(4): 845-851, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35854088

RESUMEN

BACKGROUND: Chlorhexidine gluconate (CHG) is a topical antiseptic solution recommended for skin preparation before central venous catheter placement and maintenance in adults and children. Although CHG is not recommended for use in children aged <2 months owing to limited safety data, it is commonly used in neonatal intensive care units worldwide. We used zebrafish model to verify the effects of early-life exposure to CHG on the developing nervous system, highlighting its impact on oligodendrocyte development and myelination. METHODS: Zebrafish embryos were exposed to different concentrations of CHG from 4 h post fertilization to examine developmental toxicity. The hatching rate, mortality, and malformation of the embryos/larvae were monitored. Oligodendrocyte lineage in transgenic zebrafish embryos was used to investigate defects in oligodendrocytes and myelin. Myelin structure, locomotor behavior, and expression levels of genes involved in myelination were investigated. RESULTS: Exposure to CHG significantly induced oligodendrocyte defects in the central nervous system, delayed myelination, and locomotor alterations. Ultra-microstructural changes with splitting and fluid-accumulated vacuoles between the myelin sheaths were found. Embryonic exposure to CHG decreased myelination, in association with downregulated mbpa, plp1b, and scrt2 gene expression. CONCLUSION: Our results suggest that CHG has a potential for myelin toxicity in the developing brain. IMPACT: To date, the neurodevelopmental toxicity of chlorhexidine gluconate (CHG) exposure on the developing brains of infants remains unknown. We demonstrated that CHG exposure to zebrafish larvae resulted in significant defects in oligodendrocytes and myelin sheaths. These CHG-exposed zebrafish larvae exhibited structural changes and locomotor alterations. Given the increased CHG use in neonates, this study is the first to identify the risk of early-life CHG exposure on the developing nervous system.


Asunto(s)
Antiinfecciosos Locales , Clorhexidina , Animales , Clorhexidina/toxicidad , Clorhexidina/metabolismo , Pez Cebra , Vaina de Mielina/metabolismo , Antiinfecciosos Locales/metabolismo
2.
Am J Respir Crit Care Med ; 204(10): 1143-1152, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34464242

RESUMEN

Rationale: Inhaled corticosteroids (ICS) are commonly prescribed with long-acting ß2-agonists (LABA) in chronic obstructive pulmonary disease (COPD). To date, the effects of ICS therapy on the airway microbiome in COPD are unknown. Objectives: To determine the effects of ICS/LABA on the airway microbiome of patients with COPD. Methods: Clinically stable patients with COPD were enrolled into a 4-week run-in period during which ICS was discontinued and all participants were placed on formoterol (Form) 12 µg twice daily (BID). The participants were then randomized to budesonide/formoterol (Bud + Form; 400/12 µg BID), fluticasone/salmeterol (Flu + Salm; 250/50 µg BID), or formoterol only (12 µg BID) for 12 weeks. Participants underwent bronchoscopy before and after the 12-week treatment period. The primary endpoint was the comparison of changes in the airway microbiome over the trial period between the ICS/LABA and LABA-only groups. Measurements and Main Results: Sixty-three participants underwent randomization: Bud + Form (n = 20), Flu + Salm (n = 22), and Form (n = 21) groups; 56 subjects completed all visits. After the treatment period, changes in α-diversity were significantly different across groups, especially between Flu + Salm and Form groups (Δrichness: P = 0.02; ΔShannon index: P = 0.03). Longitudinal differential abundance analyses revealed more pronounced microbial shifts from baseline in the fluticasone (vs. budesonide or formoterol only) group. Conclusions: Fluticasone-based ICS/LABA therapy modifies the airway microbiome in COPD, leading to a relative reduction in α-diversity and a greater number of bacterial taxa changes. These data may have implications in patients who develop pneumonia on ICS. Clinical trial registered with www.clinicaltrials.gov (NCT02833480).


Asunto(s)
Corticoesteroides/uso terapéutico , Agonistas de Receptores Adrenérgicos beta 2/uso terapéutico , Combinación de Medicamentos , Microbiota/efectos de los fármacos , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Receptores Adrenérgicos beta 2/efectos de los fármacos , Receptores Adrenérgicos beta 2/uso terapéutico , Administración por Inhalación , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA