Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 20(12)2020 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-32575804

RESUMEN

This Special Issue is focused on recent advances in integrated monitoring and modelling technologies for agriculture and forestry. The selected contributions cover a wide range of topics, including wireless field sensing systems, satellite and UAV remote sensing, ICT and IoT applications for smart farming.


Asunto(s)
Agricultura , Agricultura Forestal , Tecnología de Sensores Remotos , Aeronaves , Imágenes Satelitales
2.
Sensors (Basel) ; 20(11)2020 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-32486394

RESUMEN

Proximal sensors in controlled environment agriculture (CEA) are used to monitor plant growth, yield, and water consumption with non-destructive technologies. Rapid and continuous monitoring of environmental and crop parameters may be used to develop mathematical models to predict crop response to microclimatic changes. Here, we applied the energy cascade model (MEC) on green- and red-leaf butterhead lettuce (Lactuca sativa L. var. capitata). We tooled up the model to describe the changing leaf functional efficiency during the growing period. We validated the model on an independent dataset with two different vapor pressure deficit (VPD) levels, corresponding to nominal (low VPD) and off-nominal (high VPD) conditions. Under low VPD, the modified model accurately predicted the transpiration rate (RMSE = 0.10 Lm-2), edible biomass (RMSE = 6.87 g m-2), net-photosynthesis (rBIAS = 34%), and stomatal conductance (rBIAS = 39%). Under high VPD, the model overestimated photosynthesis and stomatal conductance (rBIAS = 76-68%). This inconsistency is likely due to the empirical nature of the original model, which was designed for nominal conditions. Here, applications of the modified model are discussed, and possible improvements are suggested based on plant morpho-physiological changes occurring in sub-optimal scenarios.


Asunto(s)
Agricultura/métodos , Productos Agrícolas/crecimiento & desarrollo , Modelos Teóricos , Presión de Vapor , Agua , Ambiente Controlado , Lactuca/crecimiento & desarrollo , Microclima
3.
Sensors (Basel) ; 20(6)2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-32245028

RESUMEN

Water use efficiency in agriculture can be improved by implementing advisory systems that support on-farm irrigation scheduling, with reliable forecasts of the actual crop water requirements, where crop evapotranspiration (ETc) is the main component. The development of such advisory systems is highly dependent upon the availability of timely updated crop canopy parameters and weather forecasts several days in advance, at low operational costs. This study presents a methodology for forecasting ETc, based on crop parameters retrieved from multispectral images, data from ground weather sensors, and air temperature forecasts. Crop multispectral images are freely provided by recent satellite missions, with high spatial and temporal resolutions. Meteorological services broadcast air temperature forecasts with lead times of several days, at no subscription costs, and with high accuracy. The performance of the proposed methodology was applied at 18 sites of the Campania region in Italy, by exploiting the data of intensive field campaigns in the years 2014-2015. ETc measurements were forecast with a median bias of 0.2 mm, and a median root mean square error (RMSE) of 0.75 mm at the first day of forecast. At the 5th day of accumulated forecast, the median bias and RMSE become 1 mm and 2.75 mm, respectively. The forecast performances were proved to be as accurate and as precise as those provided with a complete set of forecasted weather variables.

4.
PLoS One ; 10(4): e0123128, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25835015

RESUMEN

Ecosystem invasion by non-native, nitrogen-fixing species is a global phenomenon with serious ecological consequences. However, in the Mediterranean basin few studies addressed the impact of invasion by nitrogen-fixing shrubs on soil quality and hydrological properties at local scale, and the possible effects on succession dynamics and ecosystem invasibility by further species. In this multidisciplinary study we investigated the impact of Genista aetnensis (Biv.) DC., an exotic nitrogen-fixing shrub, on the Vesuvius Grand Cone (Southern Italy). Specifically, we tested the hypotheses that the invasion of G. aetnensis has a significant impact on soil quality, soil hydrological regime, local microclimate and plant community structure, and that its impact increases during the plant ontogenetic cycle. We showed that G. aetnensis, in a relatively short time-span (i.e. ~ 40 years), has been able to build-up an island of fertility under its canopy, by accumulating considerable stocks of C, N, and P in the soil, and by also improving the soil hydrological properties. Moreover, G. aetnensis mitigates the daily range of soil temperature, reducing the exposure of coexisting plants to extremely high temperatures and water loss by soil evaporation, particularly during the growing season. Such amelioration of soil quality, coupled with the mitigation of below-canopy microclimatic conditions, has enhanced plant colonization of the barren Grand Cone slopes, by both herbaceous and woody species. These results suggest that the invasion of G. aetnensis could eventually drive to the spread of other, more resource-demanding exotic species, promoting alternative successional trajectories that may dramatically affect the local landscape. Our study is the first record of the invasion of G. aetnensis, an additional example of the regime shifts driven by N-fixing shrubs in Mediterranean region. Further studies are needed to identity specific management practices that can limit the spread and impacts of this species.


Asunto(s)
Fenómenos Ecológicos y Ambientales , Genista/metabolismo , Especies Introducidas , Fijación del Nitrógeno/fisiología , Suelo/química , Clima , Ecosistema , Inundaciones , Italia , Región Mediterránea , Microclima , Estaciones del Año , Suelo/clasificación , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA