Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1439866, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39144216

RESUMEN

If dihydrogen (H2) becomes a major part of the energy mix, massive storage in underground gas storage (UGS), such as in deep aquifers, will be needed. The development of H2 requires a growing share of H2 in natural gas (and its current infrastructure), which is expected to reach approximately 2% in Europe. The impact of H2 in aquifers is uncertain, mainly because its behavior is site dependent. The main concern is the consequences of its consumption by autochthonous microorganisms, which, in addition to energy loss, could lead to reservoir souring and alter the petrological properties of the aquifer. In this work, the coinjection of 2% H2 in a natural gas blend in a low-salinity deep aquifer was simulated in a three-phase (aquifer rock, formation water, and natural gas/H2 mix) high-pressure reactor for 3 months with autochthonous microorganisms using a protocol described in a previous study. This protocol was improved by the addition of protocol coupling experimental measures and modeling to calculate the pH and redox potential of the reactor. Modeling was performed to better analyze the experimental data. As in previous experiments, sulfate reduction was the first reaction to occur, and sulfate was quickly consumed. Then, formate production, acetogenesis, and methanogenesis occurred. Overall, H2 consumption was mainly caused by methanogenesis. Contrary to previous experiments simulating H2 injection in aquifers of higher salinity using the same protocol, microbial H2 consumption remained limited, probably because of nutrient depletion. Although calcite dissolution and iron sulfide mineral precipitation likely occurred, no notable evolution of the rock phase was observed after the experiment. Overall, our results suggested that H2 can be stable in this aquifer after an initial loss. More generally, aquifers with low salinity and especially low electron acceptor availability should be favored for H2 costorage with natural gas.

2.
FEMS Microbiol Ecol ; 100(6)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38658197

RESUMEN

The dihydrogen (H2) sector is undergoing development and will require massive storage solutions. To minimize costs, the conversion of underground geological storage sites, such as deep aquifers, used for natural gas storage into future underground hydrogen storage sites is the favored scenario. However, these sites contain microorganisms capable of consuming H2, mainly sulfate reducers and methanogens. Methanogenesis is, therefore expected but its intensity must be evaluated. Here, in a deep aquifer used for underground geological storage, 17 sites were sampled, with low sulfate concentrations ranging from 21.9 to 197.8 µM and a slow renewal of formation water. H2-selected communities mainly were composed of the families Methanobacteriaceae and Methanothermobacteriaceae and the genera Desulfovibrio, Thermodesulfovibrio, and Desulforamulus. Experiments were done under different conditions, and sulfate reduction, as well as methanogenesis, were demonstrated in the presence of a H2 or H2/CO2 (80/20) gas phase, with or without calcite/site rock. These metabolisms led to an increase in pH up to 10.2 under certain conditions (without CO2). The results suggest competition for CO2 between lithoautotrophs and carbonate mineral precipitation, which could limit microbial H2 consumption.


Asunto(s)
Agua Subterránea , Hidrógeno , Metano , Gas Natural , Metano/metabolismo , Agua Subterránea/microbiología , Hidrógeno/metabolismo , Sulfatos/metabolismo , Methanobacteriaceae/metabolismo , Methanobacteriaceae/genética , Methanobacteriaceae/crecimiento & desarrollo , Dióxido de Carbono/metabolismo , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación , Concentración de Iones de Hidrógeno , Microbiología del Agua
3.
RSC Adv ; 12(16): 10071-10087, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35424932

RESUMEN

In Europe, renewable energy gases such as biomethane are aimed at substituting natural gas provided their stringent compliance to natural gas quality standards stipulating maximal levels of several chemical trace compounds (TC). Preconcentration is generally required to detect TC and inasmuch as biomethane is compressed for injection in the natural gas grid, preconcentration is commonly either done by collecting the bulk pressurized gas in a high-pressure cylinder or by first depressurizing it to collect a bulk volume in e.g. a gas sampling bag. Such whole gas samples are then transported to the lab and transferred to a preconcentration unit, entailing contamination and TC loss risks. Therefore, here a novel handy field-portable device for the direct in situ high-pressure preconcentration of TC is presented, enabling to sample gases at pressures up to 200 bara through a self-assembled Tenax®TA + Carbopack™X multibed adsorbent tube. The effect of the gas sampling pressure on the preconcentration of TC on adsorbent tubes was evaluated using a synthetic gas mixture containing 41 halogenated volatile organic compounds each at 1 ppmmol in N2. At given normalized sampled volumes and in the pressure range 5-100 bara handled in French gas transport grids, the pressure had no influence on the preconcentration when the gas circulates through the adsorbent tubes and as long as the adsorbents are not saturated. Next, for the first time, a real biomethane stream was sampled using the novel direct high-pressure preconcentration method on Tenax®TA + Carbopack™X multibed adsorbent tubes, allowing to preconcentrate, in a single sampling run, a wide range of volatile organic TC. More than 26 distinct TC were detected, belonging to seven chemical families: alkenes, aromatics, alkanes (linear, cyclic and polycyclic), sulphur-compounds and terpenes, with linear alkanes (pentane, heptane, octane) and terpenes predominating. Semi-quantification indicated pentane, dimethylcyclopropane, hexane, heptane, octane, α-pinene and camphene are present at a ≤1 ppmmol concentration threshold in the biomethane.

4.
Sci Total Environ ; 806(Pt 3): 150690, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34600980

RESUMEN

The last few years have seen the proliferation of anaerobic digestion plants to produce biomethane. Oxygen (O2) traces added to biogas during the desulfurization process are co-injected in the gas network and can be stored in Underground Gas Storage (UGS). However, there are no data available for the undesirable effects of O2 on these anoxic environments, especially on deep aquifers. In addition to mineral alteration, O2 can have an impact on the anaerobic autochthonous microbial life. In our study, the storage conditions of an UGS aquifer were reproduced in a high-pressure reactor and bio-geo-chemical interactions between the aqueous, gas and solid phases were studied. Sulfate was depleted from the liquid phase for three consecutive times during the first 130 days of incubation reproducing the storage conditions (36 °C, 60 bar, methane with 1% CO2). Sulfate-reducers, such as Desulfovibrionaceae, were identified from the high-pressure system. Simulations with PHREEQC were used to determine the thermodynamic equilibrium to confirm any gas consumption. CO2 quantities decreased in the gas phase, suggesting its use as carbon source by microbial life. Benzene and toluene, hydrocarbons found in traces and known to be biodegradable in storages, were monitored and a decrease of toluene was revealed and associated to the Peptococcaceae family. Afterwards, O2 was added as 1% of the gas phase, corresponding to the maximum quantity found in biomethane after desulfurization process. Re-oxidation of sulfide to sulfate was observed along with the end of sulfate reducing activity and toluene biodegradation and the disappearance of most of the community. H2 surprisingly appeared and accumulated as soon as hydrogenotrophic sulfate-reducers decreased. H2 would be produced via the necromass fermentation accomplished by microorganisms able to resist the oxic conditions of 4.42·10-4 mol.Kgw-1 of O2. The solid phase composed essentially of quartz, presented no remarkable changes.


Asunto(s)
Agua Subterránea , Oxígeno , Geología , Metano , Sulfatos
5.
Front Microbiol ; 13: 1012400, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36687568

RESUMEN

To be effective, microbiological studies of deep aquifers must be free from surface microbial contaminants and from infrastructures allowing access to formation water (wellheads, well completions). Many microbiological studies are based on water samples obtained after rinsing a well without guaranteeing the absence of contaminants from the biofilm development in the pipes. The protocol described in this paper presents the adaptation, preparation, sterilization and deployment of a commercial downhole sampler (PDSshort, Leutert, Germany) for the microbiological studying of deep aquifers. The ATEX sampler (i.e., explosive atmospheres) can be deployed for geological gas storage (methane, hydrogen). To validate our procedure and confirm the need to use such a device, cell counting and bacterial taxonomic diversity based on high-throughput sequencing for different water samples taken at the wellhead or at depth using the downhole sampler were compared and discussed. The results show that even after extensive rinsing (7 bore volumes), the water collected at the wellhead was not free of microbial contaminants, as shown by beta-diversity analysis. The downhole sampler procedure was the only way to ensure the purity of the formation water samples from the microbiological point of view. In addition, the downhole sampler allowed the formation water and the autochthonous microbial community to be maintained at in situ pressure for laboratory analysis. The prevention of the contamination of the sample and the preservation of its representativeness are key to guaranteeing the best interpretations and understanding of the functioning of the deep biosphere.

6.
Front Microbiol ; 12: 688929, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34721313

RESUMEN

Deep aquifers (up to 2km deep) contain massive volumes of water harboring large and diverse microbial communities at high pressure. Aquifers are home to microbial ecosystems that participate in physicochemical balances. These microorganisms can positively or negatively interfere with subsurface (i) energy storage (CH4 and H2), (ii) CO2 sequestration; and (iii) resource (water, rare metals) exploitation. The aquifer studied here (720m deep, 37°C, 88bar) is naturally oligotrophic, with a total organic carbon content of <1mg.L-1 and a phosphate content of 0.02mg.L-1. The influence of natural gas storage locally generates different pressures and formation water displacements, but it also releases organic molecules such as monoaromatic hydrocarbons at the gas/water interface. The hydrocarbon biodegradation ability of the indigenous microbial community was evaluated in this work. The in situ microbial community was dominated by sulfate-reducing (e.g., Sva0485 lineage, Thermodesulfovibriona, Desulfotomaculum, Desulfomonile, and Desulfovibrio), fermentative (e.g., Peptococcaceae SCADC1_2_3, Anaerolineae lineage and Pelotomaculum), and homoacetogenic bacteria ("Candidatus Acetothermia") with a few archaeal representatives (e.g., Methanomassiliicoccaceae, Methanobacteriaceae, and members of the Bathyarcheia class), suggesting a role of H2 in microenvironment functioning. Monoaromatic hydrocarbon biodegradation is carried out by sulfate reducers and favored by concentrated biomass and slightly acidic conditions, which suggests that biodegradation should preferably occur in biofilms present on the surfaces of aquifer rock, rather than by planktonic bacteria. A simplified bacterial community, which was able to degrade monoaromatic hydrocarbons at atmospheric pressure over several months, was selected for incubation experiments at in situ pressure (i.e., 90bar). These showed that the abundance of various bacterial genera was altered, while taxonomic diversity was mostly unchanged. The candidate phylum Acetothermia was characteristic of the community incubated at 90bar. This work suggests that even if pressures on the order of 90bar do not seem to select for obligate piezophilic organisms, modifications of the thermodynamic equilibria could favor different microbial assemblages from those observed at atmospheric pressure.

7.
Environ Microbiol ; 21(10): 3953-3964, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31314939

RESUMEN

Around the world, several dozen deep sedimentary aquifers are being used for storage of natural gas. Ad hoc studies of the microbial ecology of some of them have suggested that sulfate reducing and methanogenic microorganisms play a key role in how these aquifers' communities function. Here, we investigate the influence of gas storage on these two metabolic groups by using high-throughput sequencing and show the importance of sulfate-reducing Desulfotomaculum and a new monophyletic methanogenic group. Aquifer microbial diversity was significantly related to the geological level. The distance to the stored natural gas affects the ratio of sulfate-reducing Firmicutes to deltaproteobacteria. In only one aquifer, the methanogenic archaea dominate the sulfate-reducers. This aquifer was used to store town gas (containing at least 50% H2 ) around 50 years ago. The observed decrease of sulfates in this aquifer could be related to stimulation of subsurface sulfate-reducers. These results suggest that the composition of the microbial communities is impacted by decades old transient gas storage activity. The tremendous stability of these gas-impacted deep subsurface microbial ecosystems suggests that in situ biotic methanation projects in geological reservoirs may be sustainable over time.


Asunto(s)
Archaea/metabolismo , Deltaproteobacteria/metabolismo , Desulfotomaculum/metabolismo , Firmicutes/metabolismo , Sedimentos Geológicos/microbiología , Gas Natural , Sedimentos Geológicos/química , Geología , Agua Subterránea/microbiología , Microbiota , ARN Ribosómico 16S/genética , Sulfatos/metabolismo
8.
Sci Rep ; 9(1): 8812, 2019 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-31217434

RESUMEN

Acquisitions of the Sentinel-1 satellite are processed and comprehensively analyzed to investigate the ground displacement during a three-year period above a double gas storage site (Lussagnet and Izaute) in Southwestern France. Despite quite low vertical displacements (between 4 and 8 mm) compared to the noise level, the cyclic motion reflects the seasonal variations due to charge and discharge during summer and winter periods, respectively. We can simulate the ground deformation at both storage sites by a simple mechanical model. However, ground movements of low-magnitude may be also induced by natural factors, such as the temperature or the soil moisture. Using a wavelet-based analysis, we show there is a soil expansion in the Lussagnet zone that contrasts both in phase and period with the seasonal deformation and that is linked to the surface soil moisture measured by the SMOS satellite. This other displacement is consistent with the water infiltration in the unsaturated zone followed by the swelling of a clay layer. This work reveals the combination of two different processes driving the ground displacement with the same order of magnitude (about 6 mm), namely the pressure variation of a deep gas reservoir and the swelling/shrinking of the shallow subsurface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA