Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Photonics ; 9(7): 2483-2488, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35880074

RESUMEN

Metal halide perovskites have emerged as a promising group of materials for optoelectronic applications such as photovoltaics, light emission, and photodetectors. So-far, in particular, the stability of light-emitting devices is limited, which is in part attributed to the intrinsic ionic conductivity of these materials. High-performance devices inevitably contain heterojunctions similar to other optoelectronic devices based on oxide perovskites, II-VI, or III-V group semiconductors. To enable efficient heterojunctions, ion exchange at the interface between different layers should be controlled. Herein, we report a method that enables to control and monitor the extent of anion intermixing between solution-processed lead bromide and vacuum-deposited lead chloride perovskite films. Taking advantage of the ability to fine tune the layer thicknesses of the vacuum-deposited films, we systematically study the effect of film thickness on anionic intermixing. Using these multiple layers, we prepare proof of principle light-emitting devices exhibiting green and blue electroluminescence.

2.
Chemistry ; 27(52): 13242-13248, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34268813

RESUMEN

To design molecular spin qubits with enhanced quantum coherence, a control of the coupling between the local vibrations and the spin states is crucial, which could be realized in principle by engineering molecular structures via coordination chemistry. To this end, understanding the underlying structural factors that govern the spin relaxation is a central topic. Here, we report the investigation of the spin dynamics in a series of chemically designed europium(II)-based endohedral metallofullerenes (EMFs). By introducing a unique structural difference, i. e. metal-cage binding site, while keeping other molecular parameters constant between different complexes, these manifest the key role of the three low-energy metal-displacing vibrations in mediating the spin-lattice relaxation times (T1 ). The temperature dependence of T1 can thus be normalized by the frequencies of these low energy vibrations to show an unprecedentedly universal behavior for EMFs in frozen CS2 solution. Our theoretical analysis indicates that this structural difference determines not only the vibrational rigidity but also spin-vibration coupling in these EMF-based qubit candidates.

3.
Nanoscale ; 11(13): 5861-5867, 2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-30656325

RESUMEN

Organometallic halide perovskite films were treated with novel facile solvent vapour annealing to control crystal grain size as well as the crystallinity of perovskite. As both polarity and vapour pressure of the treatment solvent for perovskite increase, luminance increases and the wavelength of the photoluminescence emission peak decreases due to enhanced crystallinity and reduced grain size.

4.
J Phys Chem Lett ; 9(14): 4066-4074, 2018 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-29975057

RESUMEN

Organic-inorganic lead halide perovskite is emerging as a potential emissive material for light emitting devices, such as, light emitting diodes (LEDs) and lasers, which has emphasized the necessity of understanding its fundamental opto-physical properties. In this work, the temperature-dependent photoluminescence of CH3NH3PbBr3 perovskite quantum dots (QDs), polycrystalline thin film (TF), and single crystal (SC) has been studied. The optophysical properties, such as exciton-phonon scattering, exciton binding energy, and exciton decay dynamics, were investigated. The exciton-phonon scattering of perovskite is investigated, which is responsible for both PL line width broadening and nonradiative decay of excitons. The exciton binding energy of QDs, TF, and SC were estimated to be 388.2, 124.3, and 40.6 meV, respectively. The observed main exciton decay pathway for QDs is the phonon assisted thermal escape, while that for TF and SC was the thermal dissociation due to low exciton binding energy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA