Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 13364, 2024 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862597

RESUMEN

This study aims to take higher-education students as examples to understand and compare artistic and engineering mindsets in creative processes using EEG. Fifteen Master of Fine Arts (MFA) visual arts and fifteen Master of Engineering (MEng) design engineering students were recruited and asked to complete alternative uses tasks wearing an EEG headset. The results revealed that (1) the engineering-mindset students responded to creative ideas faster than artistic-mindset students. (2) Although in creative processes both artistic- and engineering-mindset students showed Theta, Alpha, and Beta wave activity, the active brain areas are slightly different. The active brain areas of artistic-mindset students in creative processes are mainly in the frontal and occipital lobes; while the whole brain (frontal, oriental, temporal, and occipital lobes) was active in creative processes of engineering-mindset students. (3) During the whole creative process, the brain active level of artistic-mindset students was higher than that of engineering-mindset students. The results of this study fills gaps in existing research where only active brain areas and band waves were compared between artistic- and engineering-mindset students in creative processes. For quick thinking in terms of fluency of generating creative ideas, engineering students have an advantage in comparison to those from the visual arts. Also, the study provided more evidence that mindset can affect the active levels of the brain areas. Finally, this study provides educators with more insights on how to stimulate students' creative ability.


Asunto(s)
Creatividad , Electroencefalografía , Ingeniería , Estudiantes , Humanos , Ingeniería/educación , Femenino , Masculino , Adulto Joven , Encéfalo/fisiología , Adulto , Arte
2.
Sci Rep ; 13(1): 5213, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36997577

RESUMEN

This paper proposes a new method for real-time terrain recognition-based navigation for mobile robots. Mobile robots performing tasks in unstructured environments need to adapt their trajectories in real-time to achieve safe and efficient navigation in complex terrains. However, current methods largely depend on visual and IMU (inertial measurement units) that demand high computational resources for real-time applications. In this paper, a real-time terrain identification-based navigation method is proposed using an on-board tapered whisker-based reservoir computing system. The nonlinear dynamic response of the tapered whisker was investigated in various analytical and Finite Element Analysis frameworks to demonstrate its reservoir computing capabilities. Numerical simulations and experiments were cross-checked with each other to verify that whisker sensors can separate different frequency signals directly in the time domain and demonstrate the computational superiority of the proposed system, and that different whisker axis locations and motion velocities provide variable dynamical response information. Terrain surface-following experiments demonstrated that our system could accurately identify changes in the terrain in real-time and adjust its trajectory to stay on specific terrain.

3.
Front Neurosci ; 16: 951272, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36532268

RESUMEN

Introduction: Neurotechnology approaches, such as electroencephalography (EEG), can aid understanding of the cognitive processes behind creativity. Methods: To identify and compare the EEG characteristics of creativity-related cognitive factors (remote association, common association, combination, recall, and retrieval), 30 participants were recruited to conduct an EEG induction study. Results: From the event-related potential (ERP) results and spectral analysis, the study supports that creativity is related to the frontal lobe areas of the brain and common association is an unconscious process. Discussion: The results help explain why some creativity-related cognitive factors are involved either more or less readily than others in the creative design process from workload aspects. This study identifies the part of the brain that is involved in the combination cognitive factor and detects the ERP results on cognitive factors. This study can be used by designers and researchers to further understand the cognitive processes of creativity.

4.
Sci Rep ; 9(1): 3973, 2019 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-30850714

RESUMEN

4D printing has the potential to create complex 3D geometries which are able to react to environmental stimuli opening new design possibilities. However, the vast majority of 4D printing approaches use polymer based materials, which limits the operational temperature. Here, we present a novel multi-metal electrochemical 3D printer which is able to fabricate bimetallic geometries and through the selective deposition of different metals, temperature responsive behaviour can thus be programmed into the printed structure. The concept is demonstrated through a meniscus confined electrochemical 3D printing approach with a multi-print head design with nickel and copper used as exemplar systems but this is transferable to other deposition solutions. Improvements in deposition speed (34% (Cu)-85% (Ni)) are demonstrated with an electrospun nanofibre nib compared to a sponge based approach as the medium for providing hydrostatic back pressure to balance surface tension in order to form a electrolyte meniscus stable. Scanning electron microscopy, X-ray computed tomography and energy dispersive X-ray spectroscopy shows that bimetallic structures with a tightly bound interface can be created, however convex cross sections are created due to uneven current density. Analysis of the thermo-mechanical properties of the printed strips shows that mechanical deformations can be generated in Cu-Ni strips at temperatures up to 300 °C which is due to the thermal expansion coefficient mismatch generating internal stresses in the printed structures. Electrical conductivity measurements show that the bimetallic structures have a conductivity between those of nanocrystalline copper (5.41 × 106 S.m-1) and nickel (8.2 × 105 S.m-1). The potential of this novel low-cost multi-metal 3D printing approach is demonstrated with the thermal actuation of an electrical circuit and a range of self-assembling structures.

5.
Proc Inst Mech Eng H ; 227(7): 821-30, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23674579

RESUMEN

Current endoscopes and instruments are inadequate in some respects for complex intra-abdominal surgery because they are too flexible and cannot provide robust grasping and anatomic retraction. Minimal invasive surgery devices represent a sophisticated class of mechanical instruments making use of a range of mechanisms integrated into modular platforms that can be combined to undertake complex medical procedures. Although the machine elements concerned represent classic mechanical engineering devices, issues of miniaturization, surgical procedure compliance and location control conspire to present a design challenge. In order to capture, document and resolve the design requirements for this complex application, quality functional deployment has been applied in combination with design rationale, captured through issue-based information system mapping. This article reports the use of these tools to produce robot designs with improved dexterity and triangulation that are basic requirements in laparoscopy.


Asunto(s)
Laparoscopía/instrumentación , Cirugía Endoscópica por Orificios Naturales/instrumentación , Robótica/instrumentación , Diseño Asistido por Computadora , Diseño de Equipo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA