Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Genome ; 49(10): 1324-40, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17218960

RESUMEN

To gain insights into the structure and function of the wheat (Triticum aestivum L.) genomes, we identified 278 ESTs related to abiotic stress (cold, heat, drought, salinity, and aluminum) from 7671 ESTs previously mapped to wheat chromosomes. Of the 278 abiotic stress related ESTs, 259 (811 loci) were assigned to chromosome deletion bins and analyzed for their distribution pattern among the 7 homoeologous chromosome groups. Distribution of abiotic stress related EST loci were not uniform throughout the different regions of the chromosomes of the 3 wheat genomes. Both the short and long arms of group 4 chromosomes showed a higher number of loci in their distal regions compared with proximal regions. Of the 811 loci, the number of mapped loci on the A, B, and D genomes were 258, 281, and 272, respectively. The highest number of abiotic stress related loci were found in homoeologous chromosome group 2 (142 loci) and the lowest number were found in group 6 (94 loci). When considering the genome-specific ESTs, the B genome showed the highest number of unique ESTs (7 loci), while none were found in the D genome. Similarly, considering homoeologous group-specific ESTs, group 2 showed the highest number with 16 unique ESTs (58 loci), followed by group 4 with 9 unique ESTs (33 loci). Many of the classified proteins fell into the biological process categories associated with metabolism, cell growth, and cell maintenance. Most of the mapped ESTs fell into the category of enzyme activity (28%), followed by binding activity (27%). Enzymes related to abiotic stress such as beta-galactosidase, peroxidase, glutathione reductase, and trehalose-6-phosphate synthase were identified. The comparison of stress-responsive ESTs with genomic sequences of rice (Oryza sativa L.) chromosomes revealed the complexities of colinearity. This bin map provides insight into the structural and functional details of wheat genomic regions in relation to abiotic stress.


Asunto(s)
Adaptación Fisiológica/genética , Etiquetas de Secuencia Expresada , Genoma de Planta/genética , Triticum/genética , Aluminio/toxicidad , Frío , Calefacción , Presión Osmótica , Mapeo Físico de Cromosoma , Sales (Química)/farmacología , Triticum/efectos de los fármacos
2.
Theor Appl Genet ; 110(5): 906-13, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15688201

RESUMEN

Characterization and manipulation of aluminum (Al) tolerance genes offers a solution to Al toxicity problems in crop cultivation on acid soil, which composes approximately 40% of all arable land. By exploiting the rice (Oryza sativa L.)/rye (Secale cereale L.) syntenic relationship, the potential for map-based cloning of genes controlling Al tolerance in rye (the most Al-tolerant cereal) was explored. An attempt to clone an Al tolerance gene (Alt3) from rye was initiated by using DNA markers flanking the rye Alt3 gene, from many cereals. Two rice-derived, PCR-based markers flanking the Alt3 gene, B1 and B4, were used to screen 1,123 plants of a rye F2 population segregating for Alt3. Fifteen recombinant plants were identified. Four additional RFLP markers developed from rice genes/putative genes, spanning 10 kb of a 160-kb rice BAC, were mapped to the Alt3 region. Two rice markers flanked the Alt3 locus at a distance of 0.05 cM, while two others co-segregated with it. The rice/rye micro-colinearity worked very well to delineate and map the Alt3 gene region in rye. A rye fragment suspected to be part of the Alt3 candidate gene was identified, but at this level, the rye/rice microsynteny relationship broke down. Because of sequence differences between rice and rye and the complexity of the rye sequence, we have been unable to clone a full-length candidate gene in rye. Further attempts to clone a full-length rye Alt3 candidate gene will necessitate the creation of a rye large-insert library.


Asunto(s)
Mapeo Cromosómico , Oryza/genética , Secale/genética , Sintenía/genética , Aluminio/toxicidad , Northern Blotting , Southern Blotting , Cruzamientos Genéticos , Cartilla de ADN , Resistencia a Medicamentos/genética , Marcadores Genéticos/genética , Polimorfismo de Longitud del Fragmento de Restricción
3.
Genome ; 48(5): 792-801, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16391685

RESUMEN

Amplified fragment length polymorphism (AFLP) data were utilized to analyze the phylogenetic relationships among 29 accessions representing 14 of the most commonly recognized ranked species or subspecies in the genus Secale. We observed 789 AFLP markers of 1130 fragments utilizing 18 P-/M- and E-/M- primer combinations. All polymorphic fragments were used to construct phenetic and phylogenetic trees. The resulting phenogram and cladogram had similar tree topologies. Cluster analysis showed that Secale sylvestre was the most distantly related to all other ryes. Annual forms were grouped together, and the perennial forms appeared more closely related to each other. This suggested that life cycle could have played an important role in determining the relationships among Secale species. Secale sylvestre was considered to be the most ancient species, whereas Secale cereale was the most recently evolved species. Amplified fragment length polymorphism analysis clearly separated all Secale species into only 3 major species groups, within the genus Secale: S. sylvestre, Secale montanum (syn. Secale strictum) for perennial forms, and S. cereale for annual forms. This study demonstrated that the AFLP approach is a useful tool for discriminating species differences, and also gave a much better resolution in discerning genetic relationships among Secale species as compared with previous studies using other approaches.


Asunto(s)
Grano Comestible/clasificación , Polimorfismo Genético , Técnica del ADN Polimorfo Amplificado Aleatorio , Secale/clasificación , Grano Comestible/genética , Filogenia , Secale/genética
4.
Genetics ; 168(2): 651-63, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15514042

RESUMEN

A total of 1918 loci, detected by the hybridization of 938 expressed sequence tag unigenes (ESTs) from 26 Triticeae cDNA libraries, were mapped to wheat (Triticum aestivum L.) homoeologous group 4 chromosomes using a set of deletion, ditelosomic, and nulli-tetrasomic lines. The 1918 EST loci were not distributed uniformly among the three group 4 chromosomes; 41, 28, and 31% mapped to chromosomes 4A, 4B, and 4D, respectively. This pattern is in contrast to the cumulative results of EST mapping in all homoeologous groups, as reported elsewhere, that found the highest proportion of loci mapped to the B genome. Sixty-five percent of these 1918 loci mapped to the long arms of homoeologous group 4 chromosomes, while 35% mapped to the short arms. The distal regions of chromosome arms showed higher numbers of loci than the proximal regions, with the exception of 4DL. This study confirmed the complex structure of chromosome 4A that contains two reciprocal translocations and two inversions, previously identified. An additional inversion in the centromeric region of 4A was revealed. A consensus map for homoeologous group 4 was developed from 119 ESTs unique to group 4. Forty-nine percent of these ESTs were found to be homoeologous to sequences on rice chromosome 3, 12% had matches with sequences on other rice chromosomes, and 39% had no matches with rice sequences at all. Limited homology (only 26 of the 119 consensus ESTs) was found between wheat ESTs on homoeologous group 4 and the Arabidopsis genome. Forty-two percent of the homoeologous group 4 ESTs could be classified into functional categories on the basis of blastX searches against all protein databases.


Asunto(s)
Mapeo Cromosómico , Cromosomas de las Plantas/genética , Etiquetas de Secuencia Expresada , Genes de Plantas , Triticum/genética , Eliminación de Gen , Duplicación de Gen , Biblioteca de Genes , Genoma de Planta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA