Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ChemSusChem ; : e202400866, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38979687

RESUMEN

Multifunctional heterogeneous catalysts are an effective strategy to drive chemical cascades, with attendant time, resource and cost efficiencies by eliminating unit operations arising in normal multistep processes. Despite advances in the design of such catalysts, the fabrication of proximate, chemically antagonistic active sites remains a challenge for inorganic materials science. Hydrogen-bonded organocatalysts offer new opportunities for the molecular level design of multifunctional structures capable of stabilising antagonistic active sites. We report the catalytic application of a charge-assisted, hydrogen-bonded crystalline material, bis(melaminium)adipate (BMA), synthesised from melamine and adipic acid, which possesses proximate acid-base sites. BMA exhibits high activity for the cascade deacetalisation-Knoevenagel condensation of dimethyl acetals to form benzylidenemalononitriles under mild conditions in water; BMA is amenable to large-scale manufacture and recycling with minimal deactivation. Computational modelling of the melaminium cation in protonated BMA explains the observed catalytic reactivity, and identifies the first demethoxylation step as rate-limiting, in good agreement with time-dependent 1H NMR and kinetic experiments. A broad substrate scope for the cascade transformation of aromatic dimethyl acetals is demonstrated.

2.
Nanoscale ; 16(19): 9426-9435, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38651787

RESUMEN

Electrocatalytic nitrogen fixation to ammonia (NH3), a precursor for fertilizer production and a promising energy carrier, has garnered widespread interest as an environment-friendly and sustainable alternative to the energy-intensive fossil-feedstock-dependent Haber-Bosch process. The large-scale deployment of this process is contingent on the identification of inexpensive, Earth-abundant systems that can operate efficiently, irrespective of the electrolyte pH for the selective production of NH3. In this regard, we discuss the scalable synthesis of VO2 anchored on N-doped carbon (VO2@CN), and its applicability as a robust electrocatalyst for the nitrogen reduction reaction (NRR). Benefitting from the presence of exposed VO2, which presumably acts as the active site for nitrogen reduction, and its activity over a broad pH range (from acidic to neutral), VO2@CN exhibits a high NH3 yield of 0.31 and 0.52 µmol h-1 mgcat-1 and a maximum Faradaic efficiency (FE) of 67.9% and 61.9% at -0.1 V vs. RHE, under neutral and acidic conditions, respectively. The obscured reaction intermediates of the NRR were identified from in situ ATR-IR studies under both electrolyte conditions. Additionally, the high selectivity of the catalyst was ascertained from the absence of hydrazine production and the competing hydrogen evolution reaction (HER). However, ammonia production underwent a reduction over 12 h of continuous operation presumably owing to the leaching of catalyst under these electrolysis conditions, which was more pronounced in electrolytes with acidic pH. Overall, the present report unveils the performance of an earth-abundant vanadium oxide-based system as an efficient electrocatalyst for the NRR under acidic and neutral pH conditions.

3.
ChemSusChem ; 16(11): e202300220, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-36852710

RESUMEN

Applications of small organic molecules and hydrogen-bonded aggregates, instead of traditional transition-metal-based electrocatalysts, are gaining momentum for addressing the issue of low-cost generation of H2 to power a sustainable environment. Such systems offer the possibility to integrate desired functional moieties with predictive structural repetition for modulating their properties. Despite these advantages, hydrogen-bonded organic systems have largely remained unexplored, especially as electrocatalysts. Melamine and adipic acid-based hydrogen-bonded organic ionic (BMA) and co-crystal systems developed under varying temperatures are explored as electrocatalysts for water oxidation reaction (WOR). These systems are easily modifiable with precisely designed molecular architecture and judiciously positioned nitrogen atoms. Combined effect of charge-assisted hydrogen bonding stabilizes the ionic BMA system under corrosive alkaline conditions and augments its remarkable electrocatalytic WOR activity, achieving a current density of 10 mA cm-2 at an overpotential of 387 mV and Faradaic efficiency ∼94.5 %. The enhanced electrocatalytic ability of BMA is attributed to its hydrophilic nature, unique molecular composition with complementary hydrogen-bonded motifs and a high density of positively charged nitrogen atoms on the surface, that facilitates electrostatic interactions and accelerate charge and mass transport processes culminating in a turnover frequency of ∼0.024 s-1 . This work validates the potential of hydrogen-bonded molecular organo-electrocatalysts towards WOR.


Asunto(s)
Hidrógeno , Protones , Nitrógeno , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA