Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Water Res ; 264: 122218, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39121819

RESUMEN

Chlorite (ClO2-) is a regulated byproduct of chlorine dioxide water treatment processes. The transformation of chlorite under UV irradiation into chloride (Cl-) and chlorate (ClO3-) involves reactive species chain reactions that could enhance chlorine dioxide water treatment efficiency while reducing residual chlorite levels. This study conducted a mechanistic investigation of chlorite phototransformation by analyzing reaction intermediates and stable end products, including chlorine dioxide (ClO2), free chlorine (HOCl/OCl-), hydroxyl­radical (•OH), Cl-, and ClO3- through combined experimental and modeling approaches. Experiments were performed at UV254 irradiation in pure buffered water within the pH range of 6 to 8. Results indicated that the apparent quantum yields for chlorite phototransformation increased from 0.86 to 1.45, and steady-state •OH concentrations at 1 mM initial chlorite concentration rose from 8.16 × 10-14 M - 16.1 × 10-14 M with decreasing pH values. It was observed that under UV irradiation, chlorite acts as both a significant producer and consumer of reactive species through three distinct reaction pathways. The developed kinetic model, which incorporates optimized intrinsic chlorite quantum yields Φchloritein ranging from 0.33 to 0.39, effectively simulated the loss of oxidants and the formation of major products. It also accurately predicted steady-state concentrations of various species, including •OH, •ClO, Cl• and O3. For the first time, this study provides a comprehensive transformation pathway scheme for chlorite phototransformation. The findings offer important insights into the mechanistic aspects of product and oxidizing species formation during chlorite phototransformation.


Asunto(s)
Cloruros , Compuestos de Cloro , Rayos Ultravioleta , Cloruros/química , Compuestos de Cloro/química , Purificación del Agua , Óxidos/química , Cloro/química , Cinética , Concentración de Iones de Hidrógeno , Radical Hidroxilo/química
2.
Water Res ; 221: 118739, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35716412

RESUMEN

Membrane ozonation of bromide-containing, high-color natural organic matter (NOM) containing groundwater was performed using single-tube polydimethylsiloxane (PDMS) and multi-tube polytetrafluoroethylene (PTFE) membrane contactors, and compared to batch ozonation. For membrane ozonation, dissolved ozone concentration, water color (VIS436), ultraviolet light absorption (UV254) and bromate formation were correlated with ozone dose, ozone gas concentration, hydraulic retention time and Hatta number (Ha). NOM color removal of up to 45 % for the single-tube contactor and 17 % for the multi-tube contactor were achieved while containing bromate formation below 10 µg L-1. Higher color removal using higher ozone doses was associated with high bromate formation i.e. >>10 µg L-1. In membrane ozonation, low ozone gas concentrations, long hydraulic retention times and high Ha resulted in low dissolved ozone concentrations due to quenching of ozone by NOM. At specific ozone doses of < 0.5 mg O3/mg DOC and Ha > 1, single-tube ozonation resulted in comparable results to batch ozonation while bromate formation was higher in the single-tube contactor at specific ozone doses > 0.5 mg O3/mg DOC and Ha < 1. At comparable ozone doses and Ha, bromate formation in the multi-tube contactor was always higher compared to single-tube and batch ozonation. This could be associated with the uneven ozone distribution within the multi-tube contactor. Results show that ozone dose is the major driver for selectivity between bromate formation and NOM color removal in both membrane and batch ozonation. Bromate formation in membrane ozonation may be controlled by adjusting gas concentration, Ha and hydraulic retention time. Membrane module design and process parameters of membrane ozonation reactors significantly affect treatment performance and should be optimized for selective target compound removal over by-product formation.


Asunto(s)
Agua Subterránea , Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Bromatos , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
3.
Nanoscale ; 12(41): 21138-21145, 2020 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-32662458

RESUMEN

The rejection of particles with different charges and sizes, ranging from a few Ångstroms to tens of nanometers, is key to a wide range of industrial applications, from wastewater treatment to product purification in biotech processes. Carbon nanotubes (CNTs) have long held the promise to revolutionize filtration, with orders of magnitude higher fluxes compared to commercial membranes. CNTs, however, can only reject particles and ions wider than their internal diameter. In this work, the fabrication of aligned boron nitride nanotube (BNNT) membranes capable of rejecting nanoparticles smaller than their internal diameter is reported for the first time. This is due to a mechanism of charge-based rejection in addition to the size-based one, enabled by the BNNTs surface structure and chemistry and elucidated here using high fidelity molecular dynamics and Brownian dynamics simulations. This results in ∼40% higher rejection of the same particles by BNNT membranes than CNT ones with comparable nanotube diameter. Furthermore, since permeance is proportional to the square of the nanotubes' diameter, using BNNT membranes with ∼30% larger nanotube diameter than a CNT membrane with comparable rejection would result in up to 70% higher permeance. These results open the way to the design of more effective nanotube membranes, capable of high particle rejection and, at the same time, high water permeance.

4.
ACS Appl Mater Interfaces ; 11(29): 26373-26383, 2019 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-31294955

RESUMEN

Fouling remains a long-standing unsolved problem that hinders the widespread use of membrane applications in industry. This article reports the use of numerical simulations coupled with extensive material synthesis and characterization to fabricate fouling-resistant 3D printed composite membranes. The membranes consist of a thin polyethersulfone selective layer deposited onto a 3D printed flat and double sinusoidal (wavy) support. Fouling and cleaning of the composite membranes were tested by using bovine serum albumin solution in a cross-flow ultrafiltration setup. The transmembrane pressure was regulated at 1 bar and the cross-flow Reynolds number (Re) varied between 400 and 1000. In comparison to the flat membrane, the wavy membrane showed superior performance in terms of pure water permeance (PWP) (10% higher) and permeance recovery ratio (87% vs 53%) after the first filtration cycle at Re = 1000. Prolong testing showed that the wavy membrane could retain approximately 87% of its initial PWP after 10 complete filtration cycles. This impressive fouling-resistant behavior is attributed to the localized fluid turbulence induced by the 3D printed wavy structure. These results show that not only the lifetime of membrane operations could be favorably extended but also the operational costs and environmental damage of membrane-based processes could also be significantly reduced.

5.
ACS Appl Mater Interfaces ; 11(1): 1689-1698, 2019 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-30543406

RESUMEN

The independent effect of nanotube surface chemistry and structure on the flow of water under nanoscale confinement is demonstrated in this paper for the first time via the synthesis of novel carbon nitride nanotube (CNNT) membranes. Using a combination of experiments and high-fidelity molecular dynamics (MD) simulations, it is shown here that the hydrophilization of the sp2 carbon structure, induced by the presence of the C-N bonds, decreases the pure water permeance in CNNTs when compared with pristine and turbostratic carbon nanotubes (CNTs). The MD simulations are based on a model true to the chemical structure of the synthesized nanotubes, built from spectroscopy measurements and calibrated potentials using droplet experiments. The effect on permeance is explained in terms of solid-liquid interactions at the nanotube wall with increased water viscosity and decreased surface diffusion near the CNNT wall, when compared to CNTs. A model directly linking the solid-liquid interactions to the water permeance is presented, showing good agreement with both experiments and MD simulations. This work opens the way to tailoring surface chemistry and structure inside nanotube membranes for a wide range of transport and separation processes.

6.
Biofouling ; 34(2): 123-131, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29268634

RESUMEN

A fluid dynamic gauging (FDG) technique was used for on-line and in situ measurements of Pseudomonas aeruginosa PAO1 biofilm thickness and strength on flat sheet polyethersulphone membranes. The measurements are the first to be successfully conducted in a membrane cross-flow filtration system under constant permeation. In addition, FDG was used to demonstrate the removal behaviour of biofilms through local biofilm strength and removal energy estimation, which other conventional measurements such as flux and TMP cannot provide. The findings suggest that FDG can provide valuable additional information related to biofilm properties that have not been measured by other monitoring methods.


Asunto(s)
Biopelículas , Incrustaciones Biológicas/prevención & control , Filtración/métodos , Membranas Artificiales , Pseudomonas aeruginosa/crecimiento & desarrollo , Purificación del Agua/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA