Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 15(2)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36839936

RESUMEN

Nanotechnology, including self-aggregated nanoparticles, has shown high effectiveness in the treatment of solid tumors. To overcome the limitations of conventional cancer therapies and promote therapeutic efficacy, a combination of PDT and chemotherapy can be considered an effective strategy for cancer treatment. This study presents the development of tumor-targeting polysialic acid (PSA) nanoparticles for chemo-PDT to increase the cellular uptake and cytotoxic effect in cancer cells. Chlorin e6 (Ce6), a photosensitizer, and the iRGD peptide (sequence; cCRGDKGPDC) were conjugated to the amine of N-deacetylated PSA. They generate reactive oxygen species (ROS), especially singlet oxygen (1O2), and target integrin αvß3 on the cancer cell surface. To offer a chemotherapeutic effect, doxorubicin (Dox) was assembled into the core of hydrophobically modified PSA by connecting it with Ce6; this was followed by its sustained release from the nanoparticles. These nanoparticles are able to generate ROS under 633 nm visible-light irradiation, resulting in the strong cytotoxicity of Dox with anticancer effects in HCT116 cells. PSA nanoparticles with the dual effect of chemo-PDT improve conventional PDT, which has a poor ability to deliver photosensitizers to cancer cells. Using their combination with Dox chemotherapy, rapid removal of cancer cells can be expected.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA