Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nutr Neurosci ; 19(1): 21-31, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26207957

RESUMEN

OBJECTIVES: Alzheimer's disease (AD) is a neurodegenerative disorder characterized by intracellular accumulations of phosphorylated forms of the microtubule binding protein tau. This study aimed to explore a novel mechanism for enhancing the clearance of these pathological tau species using the green tea flavonoid epigallocatechin-3-gallate (EGCG). EGCG is a potent antioxidant and an activator of the Nrf2 transcriptional pathway. Nrf2 activators including EGCG have shown promise in mitigating amyloid pathology in vitro and in vivo. This study assessed whether EGCG could also alter tau clearance. METHODS: Rat primary cortical neuron cultures were treated on day in vitro 8 with EGCG and analyzed for changes in gene and protein expression using luciferase assay, q-PCR, and western blotting. RESULTS: EGCG treatment led to a significant decrease in the protein levels of three AD-relevant phospho-tau epitopes. Unexpectedly, EGCG does not appear to be facilitating this effect through the Nrf2 pathway or by increasing autophagy in general. However, EGCG did significantly increase mRNA expression of the key autophagy adaptor proteins NDP52 and p62. DISCUSSION: In this study, we show that EGCG enhances the clearance of AD-relevant phosphorylated tau species in primary neurons. Interestingly, this result appears to be independent of both Nrf2 activation and enhanced autophagy - two previously reported mechanisms of phytochemical-induced tau clearance. EGCG did significantly increase expression of two autophagy adaptor proteins. Taken together, these results demonstrate that EGCG has the ability to increase the clearance of phosphorylated tau species in a highly specific manner, likely through increasing adaptor protein expression.


Asunto(s)
Catequina/análogos & derivados , Neuronas/citología , Neuronas/efectos de los fármacos , Proteínas tau/metabolismo , Animales , Antioxidantes/farmacología , Autofagia/efectos de los fármacos , Catequina/farmacología , Línea Celular Tumoral , Humanos , Microtúbulos/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Neuronas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilación , Fitoquímicos/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ratas , Ratas Sprague-Dawley , Té/química
2.
Front Neurol ; 4: 122, 2013 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-24027553

RESUMEN

One of the defining pathological features of Alzheimer disease (AD) is the intraneuronal accumulation of tau. The tau that forms these accumulations is altered both posttranslationally and conformationally, and there is now significant evidence that soluble forms of these modified tau species are the toxic entities rather than the insoluble neurofibrillary tangles. However there is still noteworthy debate concerning which specific pathological forms of tau are the contributors to neuronal dysfunction and death in AD. Given that increases in aberrant forms of tau play a role in the neurodegeneration process in AD, there is growing interest in understanding the degradative pathways that remove tau from the cell, and the selectivity of these different pathways for various forms of tau. Indeed, one can speculate that deficits in a pathway that selectively removes certain pathological forms of tau could play a pivotal role in AD. In this review we will discuss the different proteolytic and degradative machineries that may be involved in removing tau from the cell. How deficits in these different degradative pathways may contribute to abnormal accumulation of tau in AD will also be considered. In addition, the issue of the selective targeting of specific tau species to a given degradative pathway for clearance from the cell will be addressed.

3.
Proc Natl Acad Sci U S A ; 108(51): 20766-71, 2011 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-22143804

RESUMEN

The herbicide paraquat (PQ) has increasingly been reported in epidemiological studies to enhance the risk of developing Parkinson's disease (PD). Furthermore, case-control studies report that individuals with genetic variants in the dopamine transporter (DAT, SLC6A) have a higher PD risk when exposed to PQ. However, it remains a topic of debate whether PQ can enter dopamine (DA) neurons through DAT. We report here a mechanism by which PQ is transported by DAT: In its native divalent cation state, PQ(2+) is not a substrate for DAT; however, when converted to the monovalent cation PQ(+) by either a reducing agent or NADPH oxidase on microglia, it becomes a substrate for DAT and is accumulated in DA neurons, where it induces oxidative stress and cytotoxicity. Impaired DAT function in cultured cells and mutant mice significantly attenuated neurotoxicity induced by PQ(+). In addition to DAT, PQ(+) is also a substrate for the organic cation transporter 3 (Oct3, Slc22a3), which is abundantly expressed in non-DA cells in the nigrostriatal regions. In mice with Oct3 deficiency, enhanced striatal damage was detected after PQ treatment. This increased sensitivity likely results from reduced buffering capacity by non-DA cells, leading to more PQ(+) being available for uptake by DA neurons. This study provides a mechanism by which DAT and Oct3 modulate nigrostriatal damage induced by PQ(2+)/PQ(+) redox cycling.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Paraquat/farmacología , Animales , Cationes , Supervivencia Celular , Relación Dosis-Respuesta a Droga , Ratones , Ratones Transgénicos , Microdiálisis , NADPH Oxidasas/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Síndromes de Neurotoxicidad/metabolismo , Neurotoxinas/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Sustancia Negra/metabolismo
4.
PLoS One ; 6(9): e24620, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21931779

RESUMEN

Abnormalities in mitochondrial function and epigenetic regulation are thought to be instrumental in Huntington's disease (HD), a fatal genetic disorder caused by an expanded polyglutamine track in the protein huntingtin. Given the lack of effective therapies for HD, we sought to assess the neuroprotective properties of the mitochondrial energizing ketone body, D-ß-hydroxybutyrate (DßHB), in the 3-nitropropionic acid (3-NP) toxic and the R6/2 genetic model of HD. In mice treated with 3-NP, a complex II inhibitor, infusion of DßHB attenuates motor deficits, striatal lesions, and microgliosis in this model of toxin induced-striatal neurodegeneration. In transgenic R6/2 mice, infusion of DßHB extends life span, attenuates motor deficits, and prevents striatal histone deacetylation. In PC12 cells with inducible expression of mutant huntingtin protein, we further demonstrate that DßHB prevents histone deacetylation via a mechanism independent of its mitochondrial effects and independent of histone deacetylase inhibition. These pre-clinical findings suggest that by simultaneously targeting the mitochondrial and the epigenetic abnormalities associated with mutant huntingtin, DßHB may be a valuable therapeutic agent for HD.


Asunto(s)
Ácido 3-Hidroxibutírico/uso terapéutico , Enfermedad de Huntington/tratamiento farmacológico , Acetilación/efectos de los fármacos , Animales , Histonas/metabolismo , Immunoblotting , Masculino , Ratones , Ratones Endogámicos C57BL , Nitrocompuestos/uso terapéutico , Células PC12 , Propionatos/uso terapéutico , Ratas
5.
Am J Pathol ; 173(3): 610-30, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18753412

RESUMEN

Extracellular functions of the endoplasmic reticulum chaperone protein calreticulin (CRT) are emerging. Here we show novel roles for exogenous CRT in both cutaneous wound healing and diverse processes associated with repair. Compared with platelet-derived growth factor-BB-treated controls, topical application of CRT to porcine excisional wounds enhanced the rate of wound re-epithelialization. In both normal and steroid-impaired pigs, CRT increased granulation tissue formation. Immunohistochemical analyses of the wounds 5 and 10 days after injury revealed marked up-regulation of transforming growth factor-beta3 (a key regulator of wound healing), a threefold increase in macrophage influx, and an increase in the cellular proliferation of basal keratinocytes of the new epidermis and of cells of the neodermis. In vitro studies confirmed that CRT induced a greater than twofold increase in the cellular proliferation of primary human keratinocytes, fibroblasts, and microvascular endothelial cells (with 100 pg/ml, 100 ng/ml, and 1.0 pg/ml, respectively). Moreover, using a scratch plate assay, CRT maximally induced the cellular migration of keratinocytes and fibroblasts (with 10 pg/ml and 1 ng/ml, respectively). In addition, CRT induced concentration-dependent migration of keratinocytes, fibroblasts macrophages, and monocytes in chamber assays. These in vitro bioactivities provide mechanistic support for the positive biological effects of CRT observed on both the epidermis and dermis of wounds in vivo, underscoring a significant role for CRT in the repair of cutaneous wounds.


Asunto(s)
Calreticulina/metabolismo , Cicatrización de Heridas/fisiología , Animales , Movimiento Celular/fisiología , Proliferación Celular , Células Cultivadas , Tejido de Granulación/metabolismo , Humanos , Inmunohistoquímica , Queratinocitos/metabolismo , Macrófagos/metabolismo , Conejos , Porcinos , Factor de Crecimiento Transformador beta/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA