Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mov Disord ; 38(7): 1127-1142, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37156737

RESUMEN

BACKGROUND: More than 200 years after James Parkinsondescribed a clinical syndrome based on his astute observations, Parkinson's disease (PD) has evolved into a complex entity, akin to the heterogeneity of other complex human syndromes of the central nervous system such as dementia, motor neuron disease, multiple sclerosis, and epilepsy. Clinicians, pathologists, and basic science researchers evolved arrange of concepts andcriteria for the clinical, genetic, mechanistic, and neuropathological characterization of what, in their best judgment, constitutes PD. However, these specialists have generated and used criteria that are not necessarily aligned between their different operational definitions, which may hinder progress in solving the riddle of the distinct forms of PD and ultimately how to treat them. OBJECTIVE: This task force has identified current in consistencies between the definitions of PD and its diverse variants in different domains: clinical criteria, neuropathological classification, genetic subtyping, biomarker signatures, and mechanisms of disease. This initial effort for "defining the riddle" will lay the foundation for future attempts to better define the range of PD and its variants, as has been done and implemented for other heterogeneous neurological syndromes, such as stroke and peripheral neuropathy. We strongly advocate for a more systematic and evidence-based integration of our diverse disciplines by looking at well-defined variants of the syndrome of PD. CONCLUSION: Accuracy in defining endophenotypes of "typical PD" across these different but interrelated disciplines will enable better definition of variants and their stratification in therapeutic trials, a prerequisite for breakthroughs in the era of precision medicine. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/genética , Síndrome , Biomarcadores , Predicción , Sistema Nervioso Central/patología
3.
Neurobiol Dis ; 158: 105478, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34390837

RESUMEN

In Parkinson's disease (PD), the second most common neurodegenerative disorder, non-motor symptoms often precede the development of debilitating motor symptoms and present a severe impact on the quality of life. Lewy bodies containing misfolded α-synuclein progressively develop in neurons throughout the peripheral and central nervous system, which may be correlated with the early development of non-motor symptoms. Among those, increased fear and anxiety is frequent in PD and thought to result from pathology outside the dopaminergic system, which has been the focus of symptomatic treatment to alleviate motor symptoms. Alpha-synuclein accumulation has been reported in the amygdala of PD patients, a brain region critically involved in fear and anxiety. Here we asked whether α-synuclein overexpression alone is sufficient to induce an enhanced fear phenotype in vivo and which pathological mechanisms are involved. Transgenic mice expressing human wild-type α-synuclein (Thy1-aSyn), a well-established model of PD, were subjected to fear conditioning followed by extinction and then tested for extinction memory retention followed by histopathological analysis. Thy1-aSyn mice showed enhanced tone fear across acquisition and extinction compared to wild-type littermates, as well as a trend to less retention of fear extinction. Immunohistochemical analysis of the basolateral nucleus of the amygdala, a nucleus critically involved in tone fear learning, revealed extensive α-synuclein pathology, with accumulation, phosphorylation, and aggregation of α-synuclein in transgenic mice. This pathology was accompanied by microgliosis and parvalbumin neuron loss in this nucleus, which could explain the enhanced fear phenotype. Importantly, this non-motor phenotype was detected in the pre-clinical phase, prior to dopamine loss in Thy1-aSyn mice, thus replicating observations in patients. Results obtained in this study suggest a possible mechanism by which increased anxiety and maladaptive fear processing may occur in PD, opening a door for therapeutic options and further early biomarker research.


Asunto(s)
Amígdala del Cerebelo/patología , Miedo/psicología , Gliosis/genética , Gliosis/patología , Neuronas/patología , Enfermedad de Parkinson/genética , Parvalbúminas , Sinucleinopatías/genética , Sinucleinopatías/patología , Animales , Extinción Psicológica , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/psicología , Fosforilación , alfa-Sinucleína/genética
4.
Neurorehabil Neural Repair ; 33(12): 1029-1039, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31684831

RESUMEN

Background. Epidural stimulation of the spinal cord can reorganize and change the excitability of the neural circuitry to facilitate stepping in rats with a complete spinal cord injury. Parkinson's disease results in abnormal supraspinal signals from the brain to the spinal cord that affect the functional capacity of the spinal networks. Objective. The objective was to determine whether epidural stimulation (electrical enabling motor control, eEmc) of the lumbosacral spinal cord can reorganize the spinal networks to facilitate hindlimb stepping of rats with parkinsonism. Methods. A unilateral 6-OHDA (6-hydroxydopamine) lesion of the nigrostriatal pathway was used to induce parkinsonism. Sham rats (N = 4) were injected in the same region with 0.1% of ascorbic acid. Stimulation electrodes were implanted epidurally at the L2 and S1 (N = 5) or L2 (N = 5) spinal levels. Results. The 6-OHDA rats showed severe parkinsonism in cylinder and adjusting step tests and were unable to initiate stepping when placed in a running wheel and dragged their toes on the affected side during treadmill stepping. During eEmc, the 6-OHDA rats initiated stepping in the running wheel and demonstrated improved stepping quality. Conclusion. Stepping was facilitated in rats with parkinsonism with spinal cord stimulation. The underlying assumption is that the normal functional capacity of spinal networks is affected by supraspinal pathology associated with Parkinson's disease, which either generates insufficient or abnormal descending input to spinal networks and that eEmc can appropriately modulate spinal and supraspinal networks to improve the motor deficits.


Asunto(s)
Locomoción/fisiología , Trastornos Parkinsonianos/fisiopatología , Estimulación de la Médula Espinal , Médula Espinal/fisiopatología , Animales , Modelos Animales de Enfermedad , Espacio Epidural , Miembro Posterior/fisiopatología , Región Lumbosacra/fisiopatología , Masculino , Oxidopamina/toxicidad , Trastornos Parkinsonianos/inducido químicamente , Ratas Sprague-Dawley , Estimulación de la Médula Espinal/métodos
5.
J Neurosci Res ; 97(12): 1590-1605, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31282030

RESUMEN

Huntington's disease (HD) is a progressive neurodegenerative disorder caused by an expanded CAG repeat within the huntingtin (HTT) gene. The Q140 and HdhQ150 knock-in HD mouse models were generated such that HdhQ150 mice have an expanded CAG repeat inserted into the mouse Htt gene, whereas in the Q140s, mouse exon 1 Htt was replaced with a mutated version of human exon 1. By standardizing mouse strain background, breeding to homozygosity and employing sensitive behavioral tests, we demonstrate that the onset of behavioral phenotypes occurs earlier in the Q140 than the HdhQ150 knock-in mouse models and that huntingtin (HTT) aggregation appears earlier in the striata of Q140 mice. We have previously found that the incomplete splicing of mutant HTT from exon 1 to exon 2 results in the production of a small polyadenylated transcript that encodes the highly pathogenic mutant HTT exon 1 protein. In this report, we have identified a functional consequence of the sequence differences between these two models at the RNA level, in that the level of incomplete splicing, and of the mutant exon 1 HTT protein, are greater in the brains of Q140 mice. While differences in the human and mouse exon 1 HTT proteins (e.g., proline rich sequences) could also contribute to the phenotypic differences, our data indicate that the incomplete splicing of HTT and approaches to lower the levels of the exon 1 HTT transcript should be pursued as therapeutic targets.


Asunto(s)
Conducta Animal/fisiología , Modelos Animales de Enfermedad , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Enfermedad de Huntington/psicología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Femenino , Técnicas de Sustitución del Gen , Proteína Huntingtina/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Fenotipo
6.
FEBS J ; 285(16): 3002-3012, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29933522

RESUMEN

Huntington's disease (HD) is an autosomal dominant neurodegenerative disease which has no effective treatment and is characterized by psychiatric disorders, motor alterations, and dementia, with the cognitive deficits representing a devastating aspect of the disorder. Oxidative stress and elevated levels of lipid peroxidation (LPO) products are found in mouse models and patients with HD, suggesting that strategies to reduce LPO may be beneficial in HD. In contrast with traditional antioxidants, substituting hydrogen with deuterium at bis-allylic sites in polyunsaturated fatty acids (D-PUFA) decreases the rate-limiting initiation step of PUFA autoxidation, a strategy that has shown benefits in other neurodegenerative diseases. Here, we investigated the effect of D-PUFA treatment in a knock-in mouse model of HD (Q140) which presents motor deficits and neuropathology from a few months of age, and progressive cognitive decline. Q140 knock-in mice were fed a diet containing either D- or H-PUFAs for 5 months starting at 1 month of age. D-PUFA treatment significantly decreased F2 -isoprostanes in the striatum by approximately 80% as compared to H-PUFA treatment and improved performance in novel object recognition tests, without significantly changing motor deficits or huntingtin aggregation. Therefore, D-PUFA administration represents a promising new strategy to broadly reduce rates of LPO, and may be useful in improving a subset of the core deficits in HD.


Asunto(s)
Disfunción Cognitiva/dietoterapia , Deuterio/farmacología , Enfermedad de Huntington/etiología , Ácido Linoleico/farmacología , Peroxidación de Lípido/efectos de los fármacos , Animales , Peso Corporal/efectos de los fármacos , Disfunción Cognitiva/metabolismo , Deuterio/química , Suplementos Dietéticos , Modelos Animales de Enfermedad , Ácidos Grasos Insaturados/química , Ácidos Grasos Insaturados/farmacología , Femenino , Proteína Huntingtina/genética , Ácido Linoleico/química , Masculino , Ratones Transgénicos , Actividad Motora/efectos de los fármacos
7.
Neurobiol Dis ; 117: 170-180, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29859873

RESUMEN

In addition to dopaminergic and motor deficits, patients with Parkinson's disease (PD) suffer from non-motor symptoms, including early cognitive and social impairment, that do not respond well to dopaminergic therapy. Cholinergic deficits may contribute to these problems, but cholinesterase inhibitors have limited efficacy. Mice over-expressing α-synuclein, a protein critically associated with PD, show deficits in cognitive and social interaction tests, as well as a decrease in cortical acetylcholine. We have evaluated the effects of chronic administration of nicotine in mice over-expressing wild type human α-synuclein under the Thy1-promoter (Thy1-aSyn mice). Nicotine was administered subcutaneously by osmotic minipump for 6 months from 2 to 8 months of age at 0.4 mg/kg/h and 2.0 mg/kg/h. The higher dose was toxic in the Thy1-aSyn mice, but the low dose was well tolerated and both doses ameliorated cognitive impairment in Y-maze performance after 5 months of treatment. In a separate cohort of Thy1-aSyn mice, nicotine was administered at the lower dose for one month beginning at 5 months of age. This treatment partially eliminated the cognitive deficit in novel object recognition and social impairment. In contrast, chronic nicotine did not improve motor deficits after 2, 4 or 6 months of treatment, nor modified α-synuclein aggregation, tyrosine hydroxylase immunostaining, synaptic and dendritic markers, or microglial activation in Thy1-aSyn mice. These results suggest that cognitive and social impairment in synucleinopathies like PD may result from deficits in cholinergic neurotransmission and may benefit from chronic administration of nicotinic agonists.


Asunto(s)
Trastornos del Conocimiento/tratamiento farmacológico , Trastornos del Conocimiento/metabolismo , Nicotina/administración & dosificación , Trastorno de la Conducta Social/tratamiento farmacológico , Trastorno de la Conducta Social/metabolismo , alfa-Sinucleína/biosíntesis , Animales , Trastornos del Conocimiento/genética , Esquema de Medicación , Expresión Génica , Humanos , Ratones , Ratones Transgénicos , Agonistas Nicotínicos/administración & dosificación , Trastorno de la Conducta Social/genética , alfa-Sinucleína/genética
8.
Stem Cell Reports ; 10(1): 58-72, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29233555

RESUMEN

Huntington's disease (HD) is an inherited neurodegenerative disorder with no disease-modifying treatment. Expansion of the glutamine-encoding repeat in the Huntingtin (HTT) gene causes broad effects that are a challenge for single treatment strategies. Strategies based on human stem cells offer a promising option. We evaluated efficacy of transplanting a good manufacturing practice (GMP)-grade human embryonic stem cell-derived neural stem cell (hNSC) line into striatum of HD modeled mice. In HD fragment model R6/2 mice, transplants improve motor deficits, rescue synaptic alterations, and are contacted by nerve terminals from mouse cells. Furthermore, implanted hNSCs are electrophysiologically active. hNSCs also improved motor and late-stage cognitive impairment in a second HD model, Q140 knockin mice. Disease-modifying activity is suggested by the reduction of aberrant accumulation of mutant HTT protein and expression of brain-derived neurotrophic factor (BDNF) in both models. These findings hold promise for future development of stem cell-based therapies.


Asunto(s)
Cognición , Enfermedad de Huntington/terapia , Actividad Motora , Células-Madre Neurales/trasplante , Recuperación de la Función , Animales , Línea Celular , Modelos Animales de Enfermedad , Xenoinjertos , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/patología , Humanos , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Enfermedad de Huntington/fisiopatología , Ratones , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología
9.
Neurotherapeutics ; 14(4): 1107-1119, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28585223

RESUMEN

Aberrant accumulation and self-assembly of α-synuclein are tightly linked to several neurodegenerative diseases called synucleinopathies, including idiopathic Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Deposition of fibrillar α-synuclein as insoluble inclusions in affected brain cells is a pathological hallmark of synucleinopathies. However, water-soluble α-synuclein oligomers may be the actual culprits causing neuronal dysfunction and degeneration in synucleinopathies. Accordingly, therapeutic approaches targeting the toxic α-synuclein assemblies are attractive for these incurable disorders. The "molecular tweezer" CLR01 selectively remodels abnormal protein self-assembly through reversible binding to Lys residues. Here, we treated young male mice overexpressing human wild-type α-synuclein under control of the Thy-1 promoter (Thy1-aSyn mice) with CLR01 and examined motor behavior and α-synuclein in the brain. Intracerebroventricular administration of CLR01 for 28 days to the mice improved motor dysfunction in the challenging beam test and caused a significant decrease of buffer-soluble α-synuclein in the striatum. Proteinase-K-resistant, insoluble α-synuclein deposits remained unchanged in the substantia nigra, whereas levels of diffuse cytoplasmic α-synuclein in dopaminergic neurons increased in mice receiving CLR01 compared with vehicle. More moderate improvement of motor deficits was also achieved by subcutaneous administration of CLR01, in 2/5 trials of the challenging beam test and in the pole test, which requires balance and coordination. The data support further development of molecular tweezers as therapeutic agents for synucleinopathies.


Asunto(s)
Encéfalo/metabolismo , Hidrocarburos Aromáticos con Puentes/administración & dosificación , Actividad Motora/efectos de los fármacos , Organofosfatos/administración & dosificación , alfa-Sinucleína/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Encéfalo/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Humanos , Inyecciones Intraventriculares , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Tirosina 3-Monooxigenasa/metabolismo
10.
Neurobiol Aging ; 51: 54-66, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28038352

RESUMEN

How genetic variations in the dopamine transporter (DAT) combined with exposure to environmental toxins modulate the risk of Parkinson's disease remains unclear. Using unbiased stereology in DAT knock-down mice (DAT-KD) and wild-type (WT) littermates, we found that decreased DAT caused a loss of tyrosine hydroxylase-positive (dopaminergic) neurons in subregions of the substantia nigra pars compacta at 3-4 days, 5 weeks, and 18 months of age. Both genotypes lost dopaminergic neurons with age and remaining neurons at 11 months were resilient to paraquat/maneb. In 5-week-old mice, the toxins decreased substantia nigra pars compacta dopaminergic neurons in both genotypes but less in DAT-KD. Regional analysis revealed striking differences in the subsets of neurons affected by low DAT, paraquat/maneb, and aging. In particular, we show that a potentially protective effect of low DAT against toxin exposure is not sufficient to reduce death of all nigrostriatal dopaminergic neurons. Thus, different regional vulnerability of nigrostriatal dopaminergic neurons may contribute to an increased risk of developing Parkinson's disease when multiple factors are combined.


Asunto(s)
Envejecimiento/patología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/deficiencia , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Neuronas Dopaminérgicas/patología , Variación Genética , Maneb/toxicidad , Paraquat/toxicidad , Enfermedad de Parkinson/etiología , Porción Compacta de la Sustancia Negra/patología , Animales , Modelos Animales de Enfermedad , Masculino , Ratones Noqueados , Ratones Mutantes , Riesgo
11.
Cell ; 167(6): 1469-1480.e12, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27912057

RESUMEN

The intestinal microbiota influence neurodevelopment, modulate behavior, and contribute to neurological disorders. However, a functional link between gut bacteria and neurodegenerative diseases remains unexplored. Synucleinopathies are characterized by aggregation of the protein α-synuclein (αSyn), often resulting in motor dysfunction as exemplified by Parkinson's disease (PD). Using mice that overexpress αSyn, we report herein that gut microbiota are required for motor deficits, microglia activation, and αSyn pathology. Antibiotic treatment ameliorates, while microbial re-colonization promotes, pathophysiology in adult animals, suggesting that postnatal signaling between the gut and the brain modulates disease. Indeed, oral administration of specific microbial metabolites to germ-free mice promotes neuroinflammation and motor symptoms. Remarkably, colonization of αSyn-overexpressing mice with microbiota from PD-affected patients enhances physical impairments compared to microbiota transplants from healthy human donors. These findings reveal that gut bacteria regulate movement disorders in mice and suggest that alterations in the human microbiome represent a risk factor for PD.


Asunto(s)
Enfermedad de Parkinson/microbiología , Enfermedad de Parkinson/patología , Animales , Encéfalo/patología , Disbiosis/patología , Ácidos Grasos/metabolismo , Microbioma Gastrointestinal , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/fisiopatología , Humanos , Inflamación/metabolismo , Inflamación/microbiología , Inflamación/patología , Ratones , Microglía/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/fisiopatología , alfa-Sinucleína/metabolismo
12.
Brain ; 139(Pt 12): 3217-3236, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27679481

RESUMEN

Abnormal accumulation and propagation of the neuronal protein α-synuclein has been hypothesized to underlie the pathogenesis of Parkinson's disease, dementia with Lewy bodies and multiple system atrophy. Here we report a de novo-developed compound (NPT100-18A) that reduces α-synuclein toxicity through a novel mechanism that involves displacing α-synuclein from the membrane. This compound interacts with a domain in the C-terminus of α-synuclein. The E83R mutation reduces the compound interaction with the 80-90 amino acid region of α-synuclein and prevents the effects of NPT100-18A. In vitro studies showed that NPT100-18A reduced the formation of wild-type α-synuclein oligomers in membranes, reduced the neuronal accumulation of α-synuclein, and decreased markers of cell toxicity. In vivo studies were conducted in three different α-synuclein transgenic rodent models. Treatment with NPT100-18A ameliorated motor deficits in mThy1 wild-type α-synuclein transgenic mice in a dose-dependent manner at two independent institutions. Neuropathological examination showed that NPT100-18A decreased the accumulation of proteinase K-resistant α-synuclein aggregates in the CNS and was accompanied by the normalization of neuronal and inflammatory markers. These results were confirmed in a mutant line of α-synuclein transgenic mice that is prone to generate oligomers. In vivo imaging studies of α-synuclein-GFP transgenic mice using two-photon microscopy showed that NPT100-18A reduced the cortical synaptic accumulation of α-synuclein within 1 h post-administration. Taken together, these studies support the notion that altering the interaction of α-synuclein with the membrane might be a feasible therapeutic approach for developing new disease-modifying treatments of Parkinson's disease and other synucleinopathies.


Asunto(s)
Antiparkinsonianos/farmacología , Conducta Animal/efectos de los fármacos , Descubrimiento de Drogas , Enfermedad de Parkinson/tratamiento farmacológico , alfa-Sinucleína/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Humanos , Ratones , Ratones Transgénicos
13.
J Parkinsons Dis ; 5(3): 669-680, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25588356

RESUMEN

BACKGROUND: Patients with Parkinson's disease (PD) may exhibit deficits in "Theory of Mind", the ability to read others' mental states and react appropriately, a prerequisite for successful social interaction. Alpha-synuclein overexpression is widely distributed in the brain of patients with sporadic PD, suggesting that it may contribute to the non-motor deficits observed in PD patients. Mice over-expressing human wild-type alpha-synuclein under the Thy1 promoter (Thy1-aSyn mice) have synaptic deficits in the frontostriatal pathway, low cortical acetylcholine, and high level of expression of mGluR5 receptors, which have all been implicated in social recognition deficits. OBJECTIVE: To determine whether Thy1-aSyn mice present alterations in their response to social stimuli. METHODS: We have submitted Thy1-aSyn mice to tests adapted from autism models. RESULTS: At 7-8 month of age Thy1-aSyn mice explored their conspecifics significantly less than did wild-type littermates, without differences in exploration of inanimate objects, and pairs of Thy1-aSyn mice were involved in reciprocal interactions for a shorter duration than wild-type mice at this age. These deficits persisted when the test animal was enclosed in a beaker and were not present at 3-4 months of age despite the presence of olfactory deficits at that age, indicating that they were not solely caused by impairment in olfaction. CONCLUSION: Thy1-aSyn mice present progressive deficits in social recognition, supporting an association between alpha-synuclein overexpression and Theory of Mind deficits in PD and providing a useful model for identifying mechanisms and testing novel treatments for these deficits which impact patients and caretakers quality of life.


Asunto(s)
Cognición/fisiología , Modelos Animales de Enfermedad , Enfermedad de Parkinson/psicología , Conducta Social , Teoría de la Mente/fisiología , alfa-Sinucleína/metabolismo , Animales , Conducta Animal , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Enfermedad de Parkinson/metabolismo , Regiones Promotoras Genéticas , alfa-Sinucleína/genética
14.
Curr Top Behav Neurosci ; 22: 303-30, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25218491

RESUMEN

The aggregation of alpha-synuclein (aSyn) has been implicated in a number of degenerative diseases collectively termed synucleinopathies. Although most cases of synucleinopathies are idiopathic in nature, there are familial cases of these diseases that are due to mutations or multiplications of the gene coding for aSyn. Two of the most common synucleinopathies are Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Both of these diseases present with cognitive deficits, though with different clinical and temporal features. In PD, cognitive deficits are subtle, may occur before the onset of the classical motor symptoms, and only occasionally lead to dementia in the later stages of the disease. In contrast, dementia is the dominating feature of DLB from the disease onset. The impact of aSyn pathology on the development of neurobiological and behavioral impairments can be investigated using rodent models. There are currently several lines of transgenic mice overexpressing wild-type or mutated aSyn under various promoters. This review will provide an updated synopsis of the mouse lines available, summarize their cognitive deficits, and reflect on how deficits observed in these mice relate to the disease process in humans. In addition, we will review mouse lines where knockout strategies have been applied to study the effects of aSyn on various cognitive tasks and comment on how these lines have been used in combination with other transgenic strains, or with human aSyn overexpression by viral vectors. Finally, we will discuss the recent advent of bacterial artificial chromosome (BAC) transgenic models of PD and their effectiveness in modeling cognitive decline in PD.


Asunto(s)
Animales Modificados Genéticamente , Trastornos del Conocimiento/metabolismo , Demencia/metabolismo , Modelos Animales de Enfermedad , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Animales , Ratones , Ratas
15.
Pharmacol Res Perspect ; 2(5): e00065, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25505609

RESUMEN

Genome-wide association studies have identified strong associations between the risk of developing Parkinson's disease (PD) and polymorphisms in the genes encoding α-synuclein and the microtubule-associated protein tau. However, the contribution of tau and its phosphorylated form (p-tau) to α-synuclein-induced pathology and neuronal dysfunction remains controversial. We have assessed the effects of NAP (davunetide), an eight-amino acid peptide that decreases tau hyperphosphorylation, in mice overexpressing wild-type human α-synuclein (Thy1-aSyn mice), a model that recapitulates aspects of PD. We found that the p-tau/tau level increased in a subcortical tissue block that includes the striatum and brain stem, and in the cerebellum of the Thy1-aSyn mice compared to nontransgenic controls. Intermittent intranasal NAP administration at 2 µg/mouse per day, 5 days a week, for 24 weeks, starting at 4 weeks of age, significantly decreased the ratio of p-tau/tau levels in the subcortical region while a higher dose of 15 µg/mouse per day induced a decrease in p-tau/tau levels in the cerebellum. Both NAP doses reduced hyperactivity, improved habituation to a novel environment, and reduced olfactory deficits in the Thy1-aSyn mice, but neither dose improved the severe deficits of motor coordination observed on the challenging beam and pole, contrasting with previous data obtained with continuous daily administration of the drug. The data reveal novel effects of NAP on brain p-tau/tau and behavioral outcomes in this model of synucleinopathy and suggest that sustained exposure to NAP may be necessary for maximal benefits.

16.
Neurotherapeutics ; 11(4): 840-56, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25037721

RESUMEN

Mutation of the lysosomal hydrolase acid-ß-glucosidase (GCase), which leads to reduced GCase activity, is one of the most frequent genetic risk factors for Parkinson's disease (PD) and promotes α-synuclein accumulation in the brain, a hallmark of PD and other synucleinopathies. Whether targeting GCase pharmacologically is a valid therapeutic strategy for sporadic PD in the absence of GCase mutation is unknown. We have investigated whether increasing the stability, trafficking, and activity of wild-type GCase could be beneficial in synucleinopathies by administering the pharmacological chaperone AT2101 (afegostat-tartrate, isofagomine) to mice that overexpress human wild-type α-synuclein (Thy1-aSyn mice). AT2101 administered orally for 4 months to Thy1-aSyn mice improved motor and nonmotor function, abolished microglial inflammatory response in the substantia nigra, reduced α-synuclein immunoreactivity in nigral dopaminergic neurons, and reduced the number of small α-synuclein aggregates, while increasing the number of large α-synuclein aggregates. These data support the further investigation of pharmacological chaperones that target GCase as a therapeutic approach for sporadic PD and other synucleinopathies, even in the absence of glucocerebrosidase mutations.


Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/enzimología , Enfermedad de Parkinson/enzimología , Enfermedad de Parkinson/prevención & control , alfa-Sinucleína/metabolismo , beta-Glucosidasa/antagonistas & inhibidores , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Humanos , Iminopiranosas/farmacología , Masculino , Ratones , Actividad Motora/efectos de los fármacos , Agregado de Proteínas/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo , Tartratos
17.
Neurobiol Dis ; 70: 204-13, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25016198

RESUMEN

Parkinson's disease (PD) is characterized by the progressive degeneration of nigrostriatal dopaminergic neurons leading to motor deficits. The mechanisms underlying the preferential vulnerability of nigrostriatal dopaminergic neurons in PD remain poorly understood. Recent evidence supports a role for mitochondrial dysfunction and increased oxidative stress in PD pathogenesis. Genetic and pathological studies also point to alpha-synuclein as a critical factor in both familial and sporadic forms of the disease; alpha-synuclein pathology affects mitochondrial function but is widespread in PD brain, raising the question of its role in the greater vulnerability of nigrostriatal neurons in PD. We have examined mitochondrial function and oxidative damage in mice overexpressing human wild type alpha-synuclein broadly throughout the nervous system under the Thy1 promoter (Thy1-aSyn mice) between 4 and 8months of age. Similar levels of alpha-synuclein accumulation in mitochondria were detected in the ventral midbrain, striatum and cortex of Thy1-aSyn mice. However, analysis of mitochondrial respiration using Seahorse XF analyzer showed defects in mitochondrial respiratory complexes I, II, IV and V specifically in the midbrain, and IV and V in the striatum, of Thy1-aSyn mice compared to wild type littermates; mitochondrial complex I activity assay by ELISA confirmed a 40% inhibition specifically in the ventral midbrain. Mitochondrial dysfunction can contribute to oxidative stress and we observed a 40% increase in 4-hydroxynenal and 2-fold increase in malondialdehyde levels, indicative of a high level of lipid peroxidation, specifically in the ventral midbrain of Thy1-aSyn mice. The levels of peroxiredoxin 2, a neuronal antioxidant enzyme that is involved in removal of H2O2 and other toxic peroxides were decreased in the midbrain whereas its oxidized form increased 4-fold, suggesting that antioxidant defenses were compromised in this region. In contrast, peroxiredoxin 2 increased in the striatum and cortex, which may contribute to their protection in the presence of high levels of alpha-synuclein. Thus, in mice over-expressing alpha-synuclein, mitochondrial dysfunction occurred preferentially in nigrostriatal dopaminergic neurons many months before striatal dopamine loss occurs at 14months of age. This may contribute to a higher level of oxidative stress that overwhelms antioxidant defense in these neurons, leading to their increased vulnerability in PD.


Asunto(s)
Corteza Cerebral/fisiopatología , Cuerpo Estriado/fisiopatología , Mesencéfalo/fisiopatología , Mitocondrias/fisiología , alfa-Sinucleína/metabolismo , Envejecimiento , Animales , ADN Mitocondrial/metabolismo , Neuronas Dopaminérgicas/fisiología , Complejo I de Transporte de Electrón/metabolismo , Humanos , Peroxidación de Lípido/fisiología , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Transgénicos , Estrés Oxidativo/fisiología , Peroxirredoxinas/metabolismo , alfa-Sinucleína/genética
18.
Neurobiol Dis ; 69: 263-75, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24844147

RESUMEN

Cholesterol-oximes TRO19622 and TRO40303 target outer mitochondrial membrane proteins and have beneficial effects in preclinical models of neurodegenerative diseases leading to their advancement to clinical trials. Dopaminergic neurons degenerate in Parkinson's disease (PD) and are prone to oxidative stress and mitochondrial dysfunction. In order to provide insights into the neuroprotective potential of TRO19622 and TRO40303 for dopaminergic neurons in vivo, we assessed their effects on gene expression in laser captured nigrostriatal dopaminergic neurons of wildtype mice and of mice that over-express alpha-synuclein, a protein involved in both familial and sporadic forms of PD (Thy1-aSyn mice). Young mice were fed the drugs in food pellets or a control diet from 1 to 4months of age, approximately 10months before the appearance of striatal dopamine loss in this model. Unbiased weighted gene co-expression network analysis (WGCNA) of transcriptional changes revealed effects of cholesterol oximes on transcripts related to mitochondria, cytoprotection and anti-oxidant response in wild-type and transgenic mice, including increased transcription of stress defense (e.g. Prdx1, Prdx2, Glrx2, Hspa9, Pink1, Drp1, Trak1) and dopamine-related (Th, Ddc, Gch1, Dat, Vmat2, Drd2, Chnr6a) genes. Even at this young age transgenic mice showed alterations in transcripts implicated in mitochondrial function and oxidative stress (e.g. Bcl-2, Bax, Casp3, Nos2), and both drugs normalized about 20% of these alterations. Young Thy1-aSyn mice exhibit motor deficits that differ from parkinsonism and are established before the onset of treatment; these deficits were not improved by cholesterol oximes. However, high doses of TRO40303 improved olfaction and produced the same effects as dopamine agonists on a challenging beam test, specifically an increase in footslips, an observation congruent with its effects on transcripts involved in dopamine synthesis. High doses of TRO19622 increased alpha-synuclein aggregates in the substantia nigra; this effect, not seen with TRO40303 was inconsistent and may represent a protective mechanism as in other neurodegenerative diseases. Overall, the results suggest that cholesterol oximes, while not improving early effects of alpha-synuclein overexpression on motor behavior or pathology, may ameliorate the function and resilience of dopaminergic neurons in vivo and support further studies of neuroprotection in models with dopaminergic cell loss.


Asunto(s)
Encéfalo/efectos de los fármacos , Colestenonas/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Oximas/farmacología , Secoesteroides/farmacología , alfa-Sinucleína/metabolismo , Animales , Encéfalo/metabolismo , Colestenonas/farmacocinética , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Agonistas de Dopamina/farmacología , Neuronas Dopaminérgicas/metabolismo , Expresión Génica/efectos de los fármacos , Humanos , Masculino , Ratones Transgénicos , Trastornos del Movimiento/tratamiento farmacológico , Trastornos del Movimiento/metabolismo , Fármacos Neuroprotectores/farmacocinética , Oximas/farmacocinética , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/metabolismo , ARN Mensajero/metabolismo , Secoesteroides/farmacocinética , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo , Transcriptoma/efectos de los fármacos , alfa-Sinucleína/genética
19.
J Parkinsons Dis ; 4(3): 531-539, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24867919

RESUMEN

BACKGROUND: Sleep disruptions occur early and frequently in Parkinson's disease (PD). PD patients also show a slowing of resting state activity. Alpha-synuclein is causally linked to PD and accumulates in sleep-related brain regions. While sleep problems occur in over 75% of PD patients and severely impact the quality of life of patients and caregivers, their study is limited by a paucity of adequate animal models. OBJECTIVE: The objective of this study was to determine whether overexpression of wildtype alpha-synuclein could lead to alterations in sleep patterns reminiscent of those observed in PD by measuring sleep/wake activity with rigorous quantitative methods in a well-characterized genetic mouse model. METHODS: At 10 months of age, mice expressing human wildtype alpha-synuclein under the Thy-1 promoter (Thy1-aSyn) and wildtype littermates underwent the subcutaneous implantation of a telemetry device (Data Sciences International) for the recording of electromyograms (EMG) and electroencephalograms (EEG) in freely moving animals. Surgeries and data collection were performed without knowledge of mouse genotype. RESULTS: Thy1-aSyn mice showed increased non-rapid eye movement sleep during their quiescent phase, increased active wake during their active phase, and decreased rapid eye movement sleep over a 24-h period, as well as a shift in the density of their EEG power spectra toward lower frequencies with a significant decrease in gamma power during wakefulness. CONCLUSIONS: Alpha-synuclein overexpression in mice produces sleep disruptions and altered oscillatory EEG activity reminiscent of PD, and this model provides a novel platform to assess mechanisms and therapeutic strategies for sleep dysfunction in PD.


Asunto(s)
Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Enfermedad de Parkinson/complicaciones , Trastornos del Sueño-Vigilia/etiología , Trastornos del Sueño-Vigilia/fisiopatología , alfa-Sinucleína/metabolismo , Animales , Encéfalo/metabolismo , Electroencefalografía , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , alfa-Sinucleína/genética
20.
Behav Neurosci ; 128(2): 110-21, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24773432

RESUMEN

Communication and swallowing deficits are common in Parkinson's disease (PD). Evidence indicates that voice and speech dysfunction manifest early, prior to motor deficits typically associated with striatal dopamine loss. Unlike deficits in the extremities, cranial sensorimotor deficits are refractory to standard dopamine-related pharmacological and surgical interventions, thus the mechanisms underlying vocal deficits are unclear. Although neurotoxin models have provided some insight, they typically model nigrostriatal dopamine depletion and are therefore limited. Widespread alpha-synuclein (aSyn) pathology is common to familial and sporadic PD, and transgenic mouse models based on aSyn overexpression present a unique opportunity to explore vocalization deficits in relation to extrastriatal, nondopaminergic pathologies. Specifically, mice overexpressing human wild-type aSyn under a broad neuronal promoter (Thy1-aSyn) present early, progressive motor and nonmotor deficits starting at 2-3 months, followed by parkinsonism with dopamine loss at 14 months. We recorded ultrasonic vocalizations from Thy1-aSyn mice and wild-type (WT) controls at 2-3, 6-7, and 9 months. Thy1-aSyn mice demonstrated early, progressive vocalization deficits compared with WT. Duration and intensity of calls were significantly reduced and call profile was altered in the Thy1-aSyn mice, particularly at 2-3 months. Call rate trended toward a more drastic decrease with age in the Thy1-aSyn mice compared with WT. Alpha-synuclein pathology is present in the periaqueductal gray and may underlie the manifestation of vocalization deficits. These results indicate that aSyn overexpression can induce vocalization deficits at an early age in mice and provides a new model for studying the mechanisms underlying cranial sensorimotor deficits and treatment interventions for PD.


Asunto(s)
Enfermedad de Parkinson/fisiopatología , Vocalización Animal/fisiología , alfa-Sinucleína/genética , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Enfermedad de Parkinson/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA