Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Comput Methods Programs Biomed ; 209: 106320, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34390938

RESUMEN

BACKGROUND: After the treatment of the patients with malignant lymphoma, there may persist lesions that must be labeled either as evolutive lymphoma requiring new treatments or as residual masses. We present in this work, a machine learning-based computer-aided diagnosis (CAD) applied to whole-body diffusion-weighted magnetic resonance images. METHODS: The database consists of a total of 1005 MRI images with evolutive lymphoma and residual masses. More specifically, we propose a novel approach that leverages: (1)-The complementarity of the functional and anatomical criteria of MRI images through a fusion step based on the discrete wavelet transforms (DWT). (2)- The automatic segmentation of the lesions, their localization, and their enumeration using the Chan-Vese algorithm. (3)- The generation of the parametric image which contains the apparent diffusion coefficient value named ADC map. (4)- The features selection through the application of the sequential forward selection (SFS), Entropy, Symmetric uncertainty and Gain Ratio algorithm on 72 extracted features. (5)- The classification of the lesions by applying five well known supervised machine learning classification algorithms: the back-propagation artificial neural network (ANN), the support vector machine (SVM), the K-nearest neighbours (K-NN), Relevance Vectors Machine (RVM), and the random forest (RF) compared to deep learning based on convolutional neural network (CNN). Moreover, this study is achieved with an evaluation of the classification using 335 DW-MR images where 80% of them are used for the training and the remaining 20% for the test. RESULTS: The obtained accuracy for the five classifiers recorded a slight superiority to the proposed method based on the back-propagation 3-9-1 ANN model which reaches 96,5%. In addition, we compared the proposed method to five other works from the literature. The proposed method gives much better results in terms of SE, SP, accuracy, F1-measure, and geometric-mean which reaches respectively 96.4%, 90.9%, 95.5%, 0.97, and 91.61%. CONCLUSIONS: Our initial results suggest that Combining functional, anatomical, and morphological features of ROI's have very good accuracy (97.01%) for evolutive lymphoma and residual masses recognition when we based on the new proposed approach using the back-propagation 3-9-1 ANN model. Proposed method based on machine learning gives less than Deep learning CNN, which is 98.5%.


Asunto(s)
Linfoma , Aprendizaje Automático , Algoritmos , Humanos , Linfoma/diagnóstico por imagen , Imagen por Resonancia Magnética , Redes Neurales de la Computación , Máquina de Vectores de Soporte
2.
Curr Med Imaging ; 17(5): 623-633, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33213328

RESUMEN

BACKGROUND: In this paper, we propose a new efficient method of radionuclide ventriculography image segmentation to estimate the left ventricular ejection fraction. This parameter is an important prognostic factor for diagnosing abnormal cardiac function. METHODS: The proposed method combines the Chan-Vese and the mathematical morphology algorithms. It was applied to diastolic and systolic images obtained from the Nuclear Medicine Department of Salah AZAIEZ Institute. In order to validate our proposed method, we compare the obtained results to those of two methods present in the literature. The first one is based on mathematical morphology, while the second one uses the basic Chan-Vese algorithm. To evaluate the quality of segmentation, we compute accuracy, positive predictive value and area under the ROC curve. We also compare the left ventricle ejection fraction estimated by our method to that of the reference given by the software of the gamma-camera and validated by the expert, using Pearson's correlation coefficient, ANOVA test and linear regression. RESULTS: Static results show that the proposed method is very efficient for the detection of the left ventricle. The accuracy was 98.60%, higher than that of the other two methods (95.52% and 98.50%). CONCLUSION: Likewise, the positive predictive value was the highest (86.40% vs. 83.63% 71.82%). The area under the ROC curve was also the most important (0.998% vs. 0.926% 0.919%). On the other hand, Pearson's correlation coefficient was the highest (99% vs. 98% 37%). The correlation was significantly positive (p<0.001).


Asunto(s)
Imagen de Acumulación Sanguínea de Compuerta , Función Ventricular Izquierda , Ventrículos Cardíacos/diagnóstico por imagen , Ventriculografía con Radionúclidos , Volumen Sistólico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA