Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Curr Opin Plant Biol ; 75: 102402, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37329857

RESUMEN

There is a continuous arms race between pathogens and their host plants. However, successful pathogens, such as phytopathogenic oomycetes, secrete effector proteins to manipulate host defense responses for disease development. Structural analyses of these effector proteins reveal the existence of regions that fail to fold into three-dimensional structures, intrinsically disordered regions (IDRs). Because of their flexibility, these regions are involved in important biological functions of effector proteins, such as effector-host protein interactions that perturb host immune responses. Despite their significance, the role of IDRs in phytopathogenic oomycete effector-host protein interactions is not clear. This review, therefore, searched the literature for functionally characterized oomycete intracellular effectors with known host interactors. We further classify regions that mediate effector-host protein interactions into globular or disordered binding sites in these proteins. To fully appreciate the potential role of IDRs, five effector proteins encoding potential disordered binding sites were used as case studies. We also propose a pipeline that can be used to identify, classify as well as characterize potential binding regions in effector proteins. Understanding the role of IDRs in these effector proteins can aid in the development of new disease-control strategies.


Asunto(s)
Oomicetos , Plantas
2.
Curr Opin Microbiol ; 73: 102297, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37002974

RESUMEN

The rhizosphere is a chemically complex environment that harbors a strikingly diverse microbial community. The past few decades have seen a rapid growth in the body of literature on plant-microbe-microbe interactions and plant health. Thus, the aim of this paper is to review current knowledge on plant-microbe-microbe (specifically bacteria) interactions in the rhizosphere and how these influence rhizosphere microbiomes and impact plant health. This article discusses (i) how the plant recruits beneficial rhizosphere bacteria and ii) how competition between rhizosphere bacteria and mechanisms/weapons employed in bacteria-bacteria competition shapes rhizosphere microbiome and in turn affects plant heath. The discussion mainly focuses on interference competition, characterized by production of specialized metabolites (antibacterial compounds) and exploitative competition where a bacterial strain restricts the competitor's access to nutrients such as through secretion of siderophores that could allude to cooperation. Understanding mechanisms employed in bacteria-bacteria and plant-bacteria interactions could provide insights into how to manipulate microbiomes for improved agricultural outcomes.


Asunto(s)
Microbiota , Rizosfera , Microbiología del Suelo , Bacterias/genética , Bacterias/metabolismo , Plantas/microbiología
3.
Microbiol Spectr ; 10(2): e0177421, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35404090

RESUMEN

Oomycetes of the genus Phytophthora encompass several of the most successful plant pathogens described to date. The success of infection by Phytophthora species is attributed to the pathogens' ability to secrete effector proteins that alter the host's physiological processes. Structural analyses of effector proteins mainly from bacterial and viral pathogens have revealed the presence of intrinsically disordered regions that host short linear motifs (SLiMs). These motifs play important biological roles by facilitating protein-protein interactions as well as protein translocation. Nonetheless, SLiMs in Phytophthora species RxLR effectors have not been investigated previously and their roles remain unknown. Using a bioinformatics pipeline, we identified 333 candidate RxLR effectors in the strain INRA 310 of Phytophthora parasitica. Of these, 71 (21%) were also found to be present in 10 other genomes of P. parasitica, and hence, these were designated core RxLR effectors (CREs). Within the CRE sequences, the N terminus exhibited enrichment in intrinsically disordered regions compared to the C terminus, suggesting a potential role of disorder in effector translocation. Although the disorder content was reduced in the C-terminal regions, it is important to mention that most SLiMs were in this terminus. PpRxLR1 is one of the 71 CREs identified in this study, and its genes encode a 6-amino acid (aa)-long SLiM at the C terminus. We showed that PpRxLR1 interacts with several host proteins that are implicated in defense. Structural analysis of this effector using homology modeling revealed the presence of potential ligand-binding sites. Among key residues that were predicted to be crucial for ligand binding, L102 and Y106 were of interest since they form part of the 6-aa-long PpRxLR1 SLiM. In silico substitution of these two residues to alanine was predicted to have a significant effect on both the function and the structure of PpRxLR1 effector. Molecular docking simulations revealed possible interactions between PpRxLR1 effector and ubiquitin-associated proteins. The ubiquitin-like SLiM carried in this effector was shown to be a potential mediator of these interactions. Further studies are required to validate and elucidate the underlying molecular mechanism of action. IMPORTANCE The continuous gain and loss of RxLR effectors makes the control of Phytophthora spp. difficult. Therefore, in this study, we endeavored to identify RxLR effectors that are highly conserved among species, also known as "core" RxLR effectors (CREs). We reason that these highly conserved effectors target conserved proteins or processes; thus, they can be harnessed in breeding for durable resistance in plants. To further understand the mechanisms of action of CREs, structural dissection of these proteins is crucial. Intrinsically disordered regions (IDRs) that do not adopt a fixed, three-dimensional fold carry short linear motifs (SLiMs) that mediate biological functions of proteins. The presence and potential role of these SLiMs in CREs of Phytophthora spp. have been overlooked. To our knowledge, we have effectively identified CREs as well as SLiMs with the potential of promoting effector virulence. Together, this work has advanced our comprehension of Phytophthora RxLR effector function and may facilitate the development of innovative and effective control strategies.


Asunto(s)
Phytophthora infestans , Secuencia de Aminoácidos , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Phytophthora infestans/metabolismo , Enfermedades de las Plantas/microbiología , Plantas/metabolismo , Proteínas/metabolismo , Ubiquitinas
4.
Virulence ; 12(1): 1921-1935, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34304703

RESUMEN

Phytopathogenic oomycetes are known to successfully infect their hosts due to their ability to secrete effector proteins. Of interest to many researchers are effectors with the N-terminal RxLR motif (Arginine-any amino acid-Leucine-Arginine). Owing to advances in genome sequencing, we can now comprehend the high level of diversity among oomycete effectors, and similarly, their conservation within and among species referred to here as "core" RxLR effectors (CREs). Currently, there is a considerable number of CREs that have been identified in oomycetes. Functional characterization of these CREs propose their virulence role with the potential of targeting central cellular processes that are conserved across diverse plant species. We reason that effectors that are highly conserved and recognized by the host, could be harnessed in engineering plants for durable as well as broad-spectrum resistance.


Asunto(s)
Resistencia a la Enfermedad , Phytophthora infestans , Fitomejoramiento , Enfermedades de las Plantas/microbiología , Phytophthora infestans/patogenicidad , Plantas
5.
Microorganisms ; 8(6)2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-32560346

RESUMEN

Plants are constantly challenged by various environmental stressors ranging from abiotic-sunlight, elevated temperatures, drought, and nutrient deficits, to biotic factors-microbial pathogens and insect pests. These not only affect the quality of harvest but also the yield, leading to substantial annual crop losses, worldwide. Although plants have a multi-layered immune system, phytopathogens such as species of the oomycete genus Phytophthora, can employ elaborate mechanisms to breach this defense. For the last two decades, researchers have focused on the co-evolution between Phytophthora and interacting hosts to decouple the mechanisms governing their molecular associations. This has provided a comprehensive understanding of the pathobiology of plants affected by oomycetes. Ultimately, this is important for the development of strategies to sustainably improve agricultural production. Therefore, this paper discusses the present-day state of knowledge of the strategic mode of operation employed by species of Phytophthora for successful infection. Specifically, we consider motility, attachment, and host cell wall degradation used by these pathogenic species to obtain nutrients from their host. Also discussed is an array of effector types from apoplastic (hydrolytic proteins, protease inhibitors, elicitins) to cytoplastic (RxLRs, named after Arginine-any amino acid-Leucine-Arginine consensus sequence and CRNs, for CRinkling and Necrosis), which upon liberation can subvert the immune response and promote diseases in plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA