Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 51(36): 13601-13605, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36073182

RESUMEN

Here, SnS2/polypyrrole (PPy) was synthesized, which shows high catalytic activity for the photocatalytic oxidation of benzylamine under mild conditions (at 25 °C, in air and without adding an additional sacrificial reagent, redox mediator and photosensitizer).

2.
Soft Matter ; 18(32): 6009-6014, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35920400

RESUMEN

Low-dimensional metal-organic frameworks (MOFs) exhibit enhanced properties compared with three-dimensional (3D) geometry MOFs in many fields. In this work, we demonstrate the synthesis of Cu3(BTC)2 (BTC = benzene-1,3,5-tricarboxylate) nanoflakes in a binary solvent of ionic liquid (IL) and water. Such a MOF architecture has a high surface area and abundant unsaturated coordination metal sites, making them attractive for adsorption and catalysis. For example, in catalyzing the oxidation reactions of a series of alcohols, the Cu3(BTC)2 nanoflakes exhibit a high performance that is superior to Cu3(BTC)2 microparticles synthesized in a conventional solvent. Experimental and theoretical studies reveal that the IL accelerates the crystallization of Cu3(BTC)2, while water plays a role in stripping the Cu3(BTC)2 blocks that are formed at an early stage through its attack on the crystal plane of Cu3(BTC)2. Such an in situ crystallization-exfoliation process that uses an IL/water solvent opens a new route for producing low-dimensional MOFs.

3.
Nanoscale ; 14(30): 11012-11017, 2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35861619

RESUMEN

To improve the photocatalytic performance of metal-organic frameworks is of great importance. We synthesized the nanosheets of a zeolitic imidazolate framework (ZIF-9(III)) in ionic liquid/ethanol solution, with an average thickness of 4.6 nm. The as-synthesized ZIF-9(III) nanosheets have optoelectronic properties superior to the three-dimensional ZIF-9(III) synthesized by the conventional solvothermal method. The ZIF-9(III) nanosheets exhibit high activity for photocatalytic hydrogen production under visible light irradiation. The maximum hydrogen production rate can reach 112.37 mmol g-1 h-1, while that by three-dimensional ZIF-9(III) is 29.64 mmol g-1 h-1 under the same experimental conditions.

4.
Nanoscale ; 14(27): 9762-9770, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35766869

RESUMEN

The development of highly catalytic hydrogen-bonded organic frameworks (HOFs) is of great importance, but remains challenging. Herein, we demonstrate the fabrication of a periodically nanoporous HOF for high performance photocatalysis. Compared with the conventional microporous HOFs, the nanoporous HOF architecture has a larger number of free carboxyl groups on the surface and presents greatly improved photoelectrochemical properties. It exhibits high catalytic activity for the photo-oxidative coupling of amines under mild conditions such as air atmosphere and room temperature and without any co-catalysts, sacrificial reagents or photosensitizers. The relationship between the structure, properties and catalytic performance of the nanoporous HOF was studied by experimental and theoretical investigations. It shows that such a HOF structure facilitates reactant adsorption and O2 dissociation, thus promoting the oxidative coupling reaction. This work provides a new way for improving the catalytic performance of a single HOF.

5.
Chem Commun (Camb) ; 58(43): 6324-6327, 2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35527508

RESUMEN

Herein, we demonstrated a highly efficient photocatalytic sulfide oxidation reaction at ambient conditions without a sacrificial reagent or redox mediator, by using Co(NO3)2/covalent organic framework nanoparticles as a photocatalyst.

6.
Chem Asian J ; 17(9): e202200031, 2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35267242

RESUMEN

Coordination polymers (CPs) display great potential for the development of highly active photocatalysts. Herein, we report the fabrication of a highly crystalline CP, [Ag2 BTT]n (BTT=benzene-1,2,4,5-tetrathiol). The crystal structure of [Ag2 BTT]n was resolved and its performance for photocatalytic oxidation of thioanisole was explored. [Ag2 BTT]n is highly active and selective for the photo-oxidation of sulfides to sulfoxides under mild conditions, that is, in air, at room temperature and in the absence of a sacrificial reagent, co-catalyst or redox mediator.

7.
Angew Chem Int Ed Engl ; 61(13): e202200039, 2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35076980

RESUMEN

Electrochemical conversion of CO2 to valuable fuels is appealing for CO2 fixation and energy storage. The Cu-based catalysts feature unique superiorities, but achieving high ethylene selectivity is still restricted. In this study, we propose the anchoring of an ionic liquid (IL) on a Cu electrocatalyst for improving the electrochemical CO2 reduction to ethylene. In a water-based electrolyte and a commonly used H-type cell, a high ethylene Faradaic efficiency of 77.3 % was achieved at -1.49 V (vs. RHE). Experimental and theoretical studies reveal that an IL can modify the electronic structure of a Cu catalyst through its interaction with Cu, making it more conducive to *CO dimerization for ethylene formation.

8.
Soft Matter ; 18(1): 10-18, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34897354

RESUMEN

Pickering emulsion is a heterogeneous system consisting of at least two immiscible liquids, which are stabilized by solid particles, in which organic solvent or water is dispersed into other phase in form of micrometre-sized droplets. Compared to traditional emulsions stabilized by surfactant, solids are cheap and can be easily separated and recycled by centrifugation or filtration after use. Moreover, the properties of Pickering emulsions can be adjusted by using different types of solid particles. Up to now, Pickering emulsions have been applied in a wide range of areas such as material science and catalysis. Here we review recent studies on Pickering emulsions stabilized by metal-organic framework, graphitic carbon nitride and graphene oxide.

9.
Inorg Chem ; 60(23): 18192-18198, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34747597

RESUMEN

Luminescent supramolecular hydrogels have shown extensive potential for a variety of applications due to their unique optical properties and biocompatibility. Coordination self-assembly provides a promising strategy for the preparation of supramolecular hydrogels. In this contribution, a series of luminescent lanthanide (Ln) supramolecular hydrogels HG-Ln2nL3n1/2 are synthesized by coordination self-assembly of Ln ions and V shaped bis-tetradentate ligands (H4L1 and H4L2) with different bent angles (∠B). Two rigid conjugated ligands H4L1 and H4L2 with bent angles (∠B ≈ 150°) featuring a 2,6-pyridine bitetrazolate chelating moiety were designed and synthesized, which generated hydrogels via the deprotonation self-assembly with lanthanide ions. Characteristic Eu3+ and Yb3+ emissions were realized in the corresponding hydrogels, with intriguing multi-stimulus response behaviors. The luminescence of the HG-Eu2nL3n1 hydrogel can be enhanced or quenched when stimulated by diverse metal ions, attributed to the replacement of the coordinated lanthanide ions and changes in the intersystem crossing efficiency of the ligand. Furthermore, pH-responsive emission of the HG-Eu2nL3n1 hydrogel has also been observed. Our work provides potential strategies for the design of next-generation smart responsive hydrogel materials with variable structures.

10.
Front Neurosci ; 15: 744296, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34658779

RESUMEN

Purpose: This study aimed to evaluate the utility of a new plan feature (planomics feature) for predicting the results of patient-specific quality assurance using the head and neck (H&N) volumetric modulated arc therapy (VMAT) plan. Methods: One hundred and thirty-one H&N VMAT plans in our institution from 2019 to 2021 were retrospectively collected. Dosimetric verification for all plans was carried out using the portal dosimetry system integrated into the Eclipse treatment planning system based on the electronic portal imaging devices. Gamma passing rates (GPR) were analyzed using three gamma indices of 3%/3 mm, 3%/2 mm, and 2%/2 mm with a 10% dose threshold. Forty-eight conventional features affecting the dose delivery accuracy were used in the study, and 2,476 planomics features were extracted based on the radiotherapy plan file. Three prediction and classification models using conventional features (CF), planomics features (PF), and hybrid features (HF) combining two sets of features were constructed by the gradient boosting regressor (GBR) and Ridge classifier for each GPR of 3%/3 mm, 3%/2 mm, and 2%/2 mm, respectively. The absolute prediction error (APE) and the area under the curve (AUC) were adopted for assessing the performance of prediction and classification models. Results: In the GPR prediction, the average APE of the models using CF, PF, and HF was 1.3 ± 1.2%/3.6 ± 3.0%, 1.7 ± 1.5%/3.8 ± 3.5%, and 1.1 ± 1.0%/4.1 ± 3.1% for 2%/2 mm; 0.7 ± 0.6%/2.0 ± 2.0%, 1.0±1.1%/2.2 ± 1.8%, and 0.6 ± 0.6%/2.2 ± 1.9% for 3%/2 mm; and 0.4 ± 0.3%/1.2 ± 1.2%, 0.4±0.5%/1.3 ± 1.0%, and 0.3±0.3%/1.2 ± 1.1% for 3%/3 mm, respectively. In the regression prediction, three models give a similar modeling performance for predicting the GPR. The classification results were 0.67 ± 0.03/0.66 ± 0.07, 0.77 ± 0.03/0.73 ± 0.06, and 0.78 ± 0.02/0.75 ± 0.04 for 3%/3 mm, respectively. For 3%/2 mm, the AUCs of the training and testing cohorts were 0.64 ± 0.03/0.62 ± 0.07, 0.70 ± 0.03/0.67 ± 0.06, and 0.75 ± 0.03/0.71 ± 0.07, respectively, and for 2%/2 mm, the average AUCs of the training and testing cohorts were 0.72 ± 0.03/0.72 ± 0.06, 0.78 ± 0.04/0.73 ± 0.07, and 0.81 ± 0.03/0.75 ± 0.06, respectively. In the classification, the PF model has a better classification performance than the CF model. Moreover, the HF model provides the best result among the three classifications models. Conclusions: The planomics features can be used for predicting and classifying the GPR results and for improving the model performance after combining the conventional features for the GPR classification.

11.
Chem Commun (Camb) ; 56(73): 10754-10757, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32789401

RESUMEN

The macro-meso-microporous and defective metal-organic framework constructed by transition metal Zn and 2,2'-bipyridine-5,5'-carboxylate was synthesized in CO2-expanded solvent. It shows high photocatalytic activity and selectivity for the oxidation of amines to imines under mild conditions, i.e., air as an oxidant, room temperature, and involving no photosensitizer or cocatalyst.

12.
J Am Chem Soc ; 142(31): 13606-13613, 2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32658474

RESUMEN

The electrochemical synthesis of chemicals from carbon dioxide, which is an easily available and renewable carbon resource, is of great importance. However, to achieve high product selectivity for desirable C2 products like ethylene is a big challenge. Here we design Cu nanosheets with nanoscaled defects (2-14 nm) for the electrochemical production of ethylene from carbon dioxide. A high ethylene Faradaic efficiency of 83.2% is achieved. It is proved that the nanoscaled defects can enrich the reaction intermediates and hydroxyl ions on the electrocatalyst, thus promoting C-C coupling for ethylene formation.

13.
Chem Commun (Camb) ; 56(55): 7637-7640, 2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32519684

RESUMEN

Here we demonstrate that the utilization of 2,4,6-tris(4-pyridyl)pyridine (tpy) for metal-organic framework modification can greatly improve the photocatalytic performance for CO2 reduction. The electron-donating nature of tpy enables the charge transfer effect, which induces strong CO2 binding affinity, facilitates *COOH formation and promotes CO2-to-CO conversion.

14.
Chem Commun (Camb) ; 56(33): 4567-4570, 2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32206765

RESUMEN

Here, we demonstrate for the first time the construction of covalent organic framework (COF) capsules with nanostructured surfaces, which combine advantages of highly accessible surface area, excellent light absorbance, and efficient separation of photogenerated electron-hole pairs. The COF capsules exhibit high activity and selectivity for photocatalytic oxidation under mild conditions.

15.
Nat Commun ; 11(1): 1431, 2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32188854

RESUMEN

The production of 2D metal-organic frameworks (MOFs) with highly exposed active surfaces is of great importance for catalysis. Here we demonstrate the formation of MOF nanosheets by utilizing CO2 as a capping agent to control the oriented growth of MOF. This strategy has many advantages over the conventional methods. For example, it is template-free and proceeds at mild temperature (35 °C), CO2 can be easily removed by depressurization, and the properties of the MOF nanosheets can be well adjusted by changing CO2 pressure. Such a simple, rapid, efficient and adjustable route produces MOF nanosheets with ultrathin thickness (∼10 nm), small lateral size (∼100 nm) and abundant unsaturated coordination metal sites on surfaces. Owing to these unique features, the as-synthesized MOF nanosheets exhibit superior activity for catalyzing the oxidation reactions of alcohols.

16.
ACS Appl Mater Interfaces ; 11(34): 30953-30958, 2019 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-31390522

RESUMEN

Metal-organic frameworks (MOFs) have attracted increased research attention in photocatalysis due to their great potential in light harvest and conversion. However, the organic transformations as photocatalyzed by MOFs under mild conditions yet remain a challenge. Herein, three bipyridyl-containing cadmium-organic frameworks Cd(dcbpy) (dcbpy = 2,2'-bipyridine-5,5'-dicarboxylate), Cd(bdc)(bpy) (bdc = 1,4-benzenedicarboxylate; bpy = 2,2'-bipyridyl), and Cd(bdc)(2Me-bpy) (2Me-bpy = 4,4'-dimethyl-2,2'-bipyridyl) were synthesized for the first time. The bpy-containing Cd-MOFs have strong light harvest abilities and suitable photocatalysis energy potentials, making them highly active and selective for the photo-oxidation of benzylamine to N-benzylbenzaldimine under mild conditions, i.e., using atmospheric air as oxidant, at room temperature, and in the absence of any photosensitizer or cocatalyst. It provides an efficient, economical, and green way for the direct oxidation of amines to produce imines.

17.
Nat Commun ; 10(1): 2980, 2019 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-31278257

RESUMEN

Developing highly efficient electrocatalysts based on cheap and earth-abundant metals for CO2 reduction is of great importance. Here we demonstrate that the electrocatalytic activity of manganese-based heterogeneous catalyst can be significantly improved through halogen and nitrogen dual-coordination to modulate the electronic structure of manganese atom. Such an electrocatalyst for CO2 reduction exhibits a maximum CO faradaic efficiency of 97% and high current density of ~10 mA cm-2 at a low overpotential of 0.49 V. Moreover, the turnover frequency can reach 38347 h-1 at overpotential of 0.49 V, which is the highest among the reported heterogeneous electrocatalysts for CO2 reduction. In situ X-ray absorption experiment and density-functional theory calculation reveal the modified electronic structure of the active manganese site, on which the free energy barrier for intermediate formation is greatly reduced, thus resulting in a great improvement of CO2 reduction performance.

18.
Chem Sci ; 10(16): 4491-4496, 2019 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-31057777

RESUMEN

The electrocatalytic conversion of CO2 to CO using non-noble metal catalysts under mild conditions is of great importance. Achieving the combination of high activity, selectivity and current density by developing electrocatalysts with desirable compositions and structures is challenging. Here we prepared for the first time Cu x Ni y alloy nanoparticles embedded in a nitrogen-carbon network. Such an electrocatalyst not only well overcomes the disadvantages of single Cu and Ni catalysts but has a high CO2 adsorption capacity. Outstandingly, the catalyst can effectively convert CO2 into CO with a maximum faradaic efficiency of 94.5% and current density of 18.8 mA cm-2 at a low applied potential of -0.60 V (versus reversible hydrogen electrode, RHE). Moreover, the catalyst is very stable during long-term electrolysis owing to the stabilization of the nitrogen-carbon network.

19.
Chem Commun (Camb) ; 54(43): 5450-5453, 2018 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-29745397

RESUMEN

A non-noble cadmium electrode was synthesized via an electrolysis strategy, which can electroreduce carbon dioxide into carbon monoxide with high selectivity and efficiency. The partial current density for CO can reach up to 59.0 mA cm-2 at a Faradaic efficiency of 99.2% using 1-butyl-3-methylimidazolium hexafluorophosphate/acetonitrile as the electrolyte.

20.
Chem Asian J ; 13(4): 386-389, 2018 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-29331094

RESUMEN

The catalytic performance of metal-organic frameworks (MOFs) for the synthesis of cyclic carbonate from carbon dioxide and epoxides has been explored under solvent and solvent-free conditions, respectively. It was found that MOF catalysts have significantly improved catalytic activities in solvent-free CO2 cycloaddition reactions than those in solvent. The mechanism was discussed with regard to the competition of solvent with substrate to adhere MOF catalysts during the reaction process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA