Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 277(Pt 3): 134315, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39094886

RESUMEN

With the increasing demand for food foaming, how to enhance the foaming properties of protein has gradually become the research focus. This work studied the effect of synephrine (SY) on foaming properties, structure properties, and physicochemical properties of soybean protein isolate (SPI). When the mass ratio of SY to SPI was 1:2, compared with SPI alone, the foam capacity and foam stability of the SY-SPI complex were significantly enhanced. Optical microscopy and confocal laser scanning microscope showed that the improvement in foaming performance was mainly due to the reduction of bubble size and uniform protein distribution. Circular dichroism spectrum and fluorescence spectra indicated that the hydrogen bond of SPI was destroyed and blue shifted with the addition of SY. What's more, the absolute value of Zeta potential, solubility, and hydrophobicity all increased, while the particle size decreased. As a result of molecular docking, surface hydrogen bonds, Van der Waals forces and hydrophobic interactions are the main driving forces. The addition of SY and SPI improved the specific volume and texture of angel cake. This study shows that SY has the potential to be developed into a new type of blowing agent.


Asunto(s)
Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Polifenoles , Solubilidad , Proteínas de Soja , Proteínas de Soja/química , Polifenoles/química , Simulación del Acoplamiento Molecular , Fenómenos Químicos , Tamaño de la Partícula , Glycine max/química
2.
Ying Yong Sheng Tai Xue Bao ; 30(4): 1312-1318, 2019 Apr.
Artículo en Chino | MEDLINE | ID: mdl-30994293

RESUMEN

Biochar has unique physicochemical properties of being rich in carbon, being alkaline, and exhibiting a highly porous structure, which can adjust features of different systems. A 90-day microcosm incubation experiment was performed to investigate the effects of corn straw biochar on the process, properties, nutrient contents, and CO2 emissions during corn straw composting. There were four treatments, including control (CK), 5% biochar addition (B1, as mass fractions of biochar), 10% biochar addition (B2), and 20% biochar addition (B3). The results showed that biochar significantly increased the temperature rise rate and temperature peak of the straw maturation system, and promoted straw decomposition. Biochar increased the pH of the microbial active period, and the electrical conductivity (EC) value of the straw decomposition system, which provided a more suitable environment for microbial degradation of the organics. Further more, biochar decreased the organic matter content, increased the total nutrient content of the straw decomposition system, and improved the quality of the straw decomposition products. In addition, nitrogen (N) content was not changed by increasing amount of biochar; however, both phosphorus (P2O5) and potassium (K2O) content were significantly increased. Compared to control, the content of P2O5 and K2O in B3 treatment was increased by 0.2% and 0.9%, respectively. Biochar addition could improve CO2 emission of the straw decomposition system. The CO2 emission was consistent with the trend of temperature change, which provided solid evidence that biochar improve the degradation of organic matter by microbes in the system.


Asunto(s)
Agricultura/métodos , Contaminantes Atmosféricos/análisis , Dióxido de Carbono/análisis , Carbón Orgánico , Nutrientes , Suelo , Zea mays
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA