Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.073
Filtrar
1.
J Hazard Mater ; 479: 135726, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39241361

RESUMEN

Efficient management of pollutant risks in water bodies is crucial for public health and aquatic ecosystem sustainability. However, the toxicities of pollutants, such as ammonia nitrogen (NH3-N), are often affected by multiple water quality factors, including the pH and water temperature. Extensive spatial and temporal variability in these factors hinders tailor-made management of risk. This study used high-frequency monitoring data collected over 1 year to evaluate the long-term NH3-N risk in China's aquatic ecosystems. High accuracy and interpretability were achieved by decomposing NH3-N risk into the contributions of key influencing factors using random forest models and Shapley Additive Explanations. Two distinct types of NH3-N risk hotspots were identified across 18 cities: 15 cities with high NH3-N concentrations and 3 cities with low environmental carrying capacity due to high pH levels or elevated water temperatures. For the former, rapid NH3-N abatement measures are necessary to bring NH3-N concentrations back below the environmental capacity. For the latter, it is recommended that NH3-N related industries are relocated to regions with high environmental capacities because fragile environments are not suitable for such industries. Importantly, this study investigated methods for attributing pollutant risks in the context of non-linear influencing factors, and the risk of NH3-N was predicted to increase by 6.1 % by the end of 2100 in the context of increasing temperatures under the SSP 2-4.5 scenario. The methodology is also adaptable and suitable for integration into global ecosystem risk management efforts to balance development and aquatic ecological sustainability.

2.
Biochem Biophys Res Commun ; 734: 150641, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39243676

RESUMEN

Gastric cancer (GC) is one of the most aggressive and lethal diseases in the world. Cancer metastasis is the mainly leading cause of death in GC patients. Aberrant Protein O-glycosylation is closely associated with tumor occurrence and metastasis. However, the effect of aberrant O-glycosylation on the progress of GC is not completely clear. This study aimed to investigate the biological function and its underlying effects mechanism of core 1 ß 1, 3-galactosyltransferase 1 (C1GALT1) C1GALT1-mediated O-glycan T antigen on GC progress. We conducted data mining analysis that C1GALT1 was obviously up-regulated in GC tissues than in para-carcinoma tissues. Elevated expression of C1GALT1 was closely associated with advanced TNM stage, lymph node metastasis, histological grade, and poor overall survival. In addition, C1GALT1 overexpression could promote GC cell proliferation, migration, and invasion, which was due to C1GALT1 overexpression-mediated O-glycan T antigen increase. Moreover, MUC1 was predicted to be a new downstream target of C1GALT1, which may be abnormally O-glycosylated by C1GALT1 thereby activating the cell adhesion signaling pathway. In conclusion, our studies proved that C1GALT1-mediated O-glycosylation increase could promote the metastasis of gastric cancer cells. These discoveries hint that C1GALT1 may serve as a novel therapeutic target for GC treatment.

3.
Sci China Life Sci ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39235560

RESUMEN

Targeting the PD-1/PD-L1 axis with small-molecular inhibitors is a promising approach for immunotherapy. Here, we identify a natural pentacyclic triterpenoid, Pygenic Acid A (PA), as a PD-1 signaling inhibitor. PA exerts anti-tumor activity in hPD-1 knock-in C57BL/6 mice and enhances effector functions of T cells to promote immune responses by disrupting the PD-1 signaling transduction. Furthermore, we identify SHP-2 as the direct molecular target of PA for inhibiting the PD-1 signaling transduction. Subsequently, mechanistic studies suggest that PA binds to a new druggable site in the phosphorylated PD-1 ITSM recognition site of SHP-2, inhibiting the recruitment of SHP-2 by PD-1. Taken together, our findings demonstrate that PA has a potential application in cancer immunotherapy and occupying the phosphorylated ITSM recognition site of SHP-2 may serve as an alternative strategy to develop PD-1 signaling inhibitors. In addition, our success in target recognition provides a paradigm of target identification and confirmation for natural products.

4.
Int J Nanomedicine ; 19: 9055-9070, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39246426

RESUMEN

Purpose: The efficacy of systemic therapy for hepatocellular carcinoma (HCC) is limited mainly by the complex tumor defense mechanism and the severe toxic side-effects of drugs. The efficacy of apatinib (Apa), a key liver cancer treatment, is unsatisfactory due to inadequate targeting and is accompanied by notable side-effects. Leveraging nanomaterials to enhance its targeting represents a crucial strategy for improving the effectiveness of liver cancer therapy. Patients and Methods: A metal polyphenol network-coated apatinib-loaded metal-organic framework-based multifunctional drug-delivery system (MIL-100@Apa@MPN) was prepared by using metal-organic frameworks (MOFs) as carriers. The nanoparticles (NPs) were subsequently characterized using techniques such as X-ray diffraction (XRD), transmission electron microscopy (TEM), zeta potential measurements, and particle size analysis. In vitro experiments were conducted to observe the drug release kinetics and cytotoxic effects of MIL-100@Apa@MPN on HepG2 cells. The in vivo anti-tumor efficacy of MIL-100@Apa@MPN was evaluated using the H22 tumor-bearing mouse model. Results: The formulated MIL-100@Apa@MPN demonstrates remarkable thermal stability and possesses a uniform structure, with measured drug-loading (DL) and encapsulation efficiency (EE) rates of 28.33% and 85.01%, respectively. In vitro studies demonstrated that HepG2 cells efficiently uptake coumarin-6-loaded NPs, and a significant increase in cumulative drug release was observed under lower pH conditions (pH 5.0), leading to the release of approximately 73.72% of Apa. In HepG2 cells, MIL-100@Apa@MPN exhibited more significant antiproliferative activity compared to free Apa. In vivo, MIL-100@Apa@MPN significantly inhibited tumor growth, attenuated side-effects, and enhanced therapeutic effects in H22 tumor-bearing mice compared to other groups. Conclusion: We have successfully constructed a MOF delivery system with excellent safety, sustained-release capability, pH-targeting, and improved anti-tumor efficacy, highlighting its potential as a therapeutic approach for the treatment of HCC.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Liberación de Fármacos , Ferroptosis , Estructuras Metalorgánicas , Piridinas , Estructuras Metalorgánicas/química , Animales , Humanos , Piridinas/química , Piridinas/administración & dosificación , Piridinas/farmacocinética , Piridinas/farmacología , Ratones , Células Hep G2 , Concentración de Iones de Hidrógeno , Ferroptosis/efectos de los fármacos , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/farmacocinética , Antineoplásicos/administración & dosificación , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Sistemas de Liberación de Medicamentos/métodos , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Tamaño de la Partícula , Nanopartículas/química
5.
Nat Commun ; 15(1): 7760, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237543

RESUMEN

Probabilistic machine learning utilizes controllable sources of randomness to encode uncertainty and enable statistical modeling. Harnessing the pure randomness of quantum vacuum noise, which stems from fluctuating electromagnetic fields, has shown promise for high speed and energy-efficient stochastic photonic elements. Nevertheless, photonic computing hardware which can control these stochastic elements to program probabilistic machine learning algorithms has been limited. Here, we implement a photonic probabilistic computer consisting of a controllable stochastic photonic element - a photonic probabilistic neuron (PPN). Our PPN is implemented in a bistable optical parametric oscillator (OPO) with vacuum-level injected bias fields. We then program a measurement-and-feedback loop for time-multiplexed PPNs with electronic processors (FPGA or GPU) to solve certain probabilistic machine learning tasks. We showcase probabilistic inference and image generation of MNIST-handwritten digits, which are representative examples of discriminative and generative models. In both implementations, quantum vacuum noise is used as a random seed to encode classification uncertainty or probabilistic generation of samples. In addition, we propose a path towards an all-optical probabilistic computing platform, with an estimated sampling rate of  ~1 Gbps and energy consumption of  ~5 fJ/MAC. Our work paves the way for scalable, ultrafast, and energy-efficient probabilistic machine learning hardware.

6.
Oncologist ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39226089

RESUMEN

BACKGROUND: Alternating sequential administration of drugs may be a promising approach to overcome chemotherapy resistance in advanced pancreatic ductal adenocarcinoma (PDAC). METHODS: This study was an open-label, single-arm, and prospective trial included patients with untreated advanced PDAC. They received 2 cycles of NS regimen (nab-paclitaxel:125 mg/m2, intravenously injected on days 1 and 8, plus S-1:40-60 mg, orally twice per day for 1-14 days) followed by 2 cycles of GemOx regimen (gemcitabine, intravenously injected on days 1 and 8, and oxaliplatin: 130 mg/m2, intravenously injected on day 1). The primary efficacy endpoint was a progression-free survival rate at 6 months (PFSR-6m). The secondary efficacy endpoints included overall survival (OS), progression-free survival (PFS), objective response rate (ORR), disease control rate (DCR), and adverse events (AEs). Specific mRNA transcripts were used to explore survival associated genes. RESULTS: Forty-two patients received a minimum of one treatment cycle, and of these, 30 patients completed one alternating treatment consisting of 4 cycles. The PFSR-6m was 71% (95% CI = 58%-87%). The median PFS and OS were 6.53 months (95% CI = 6.03-8.43) and 11.4 months (95% CI = 9.8-14.4), respectively. Common grades 3-4 hematological AEs included neutropenia 30.9%, leukopenia 26.2%, anemia 2.4%, and thrombocytopenia in 11.9%. Patients with OS > 10 months showed high expression of HLA-DQA2 while melanoma-associated antigen genes (MAGE) were notably upregulated in patients with OS < 10 months. CONCLUSION: The alternating sequential administration of the NS and GemOx regimens may be a novel approach for first-line chemotherapy in patients with advanced PDAC requiring further study (ClinicalTrials.gov Identifier: ChiCTR1900024867).

7.
Artículo en Inglés | MEDLINE | ID: mdl-39285153

RESUMEN

BACKGROUND: A lack of a "gold standard" operationalized index to measure structural racism (SR) in the current literature limits the comparison of the evidence available. This study aims to synthesize the measures of SR from the current literature to identify the measures used to date, study the indicators included, and investigate its expanding domain. METHODS: A literature search of original quantitative studies in the Google Scholar and PubMed databases for articles dated January 1, 2000-July 31, 2023, was conducted with search terms: ["Institutionalized Racism" OR "Systemic Racism", OR "Structural Racism"] AND "Health" AND "United States." The studies were summarized and extracted based on the type of SR index used, the domains of SR incorporated, and the health outcomes studied. RESULTS: A total of 74 articles were included in the final review. The historical redlining score, G-statistics, index of concentration, and structural racism index were common quantifiable measures of SR. These indices capture 56 indicators across 11 significant domains to measure SR. Similarly, SR indices are being used mostly to study the impact of SR on cardiovascular diseases and other chronic health conditions, women's and maternal health-related issues, and COVID-19 outcomes. CONCLUSION: Multiple indices have been developed to capture SR, and since the COVID-19 pandemic, we have observed an increased interest in understanding health disparities through the lens of SR. With the rise in evidence on experiences of minority races related to racism, there is a high need for a standard approach to measuring SR.

8.
J Agric Food Chem ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285157

RESUMEN

A persistent challenge in brewing is the efficient utilization of hop bitter acids, with about 50% of these compounds precipitating with trub during wort boiling. This study aims to uncover the correlation between the barley cultivar proteome and hop bitter acid utilization during wort boiling. Therefore, comparative experiments were conducted using two cultivars, Liga and Solist, with varying proteomes to identify specific proteins' role in hop bitter acids precipitation. High-performance liquid chromatography (HPLC) was used to measure hop bitter acid content, while liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to quantify and identify proteins. The 107 protein groups, particularly enzymes linked to barley metabolic defense mechanisms, exhibited significant differences between the two cultivars. Results revealed significantly lower α- and iso-α-acid content in wort produced from the barley cultivar Liga. This study highlights the critical role of the barley proteome in optimizing process efficiency by enhancing hop utilization through barley cultivar selection.

9.
Front Plant Sci ; 15: 1439972, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39263419

RESUMEN

Autophagy is a highly conserved process in eukaryotes that is used to recycle the cellular components from the cytoplasm. It plays a crucial function in responding to both biotic and abiotic stress, as well as in the growth and development of plants. Autophagy-related genes (ATG) and their functions have been identified in numerous crop species. However, their specific tasks in potatoes (Solanum tuberosum L.), are still not well understood. This work is the first to identify and characterize the potato StATG18 subfamily gene at the whole-genome level, resulting in a total of 6 potential StATG18 subfamily genes. We analyzed the phylogenetic relationships, chromosome distribution and gene replication, conserved motifs and gene structure, interspecific collinearity relationship, and cis-regulatory elements of the ATG18 subfamily members using bioinformatics approaches. Furthermore, the quantitative real-time polymerase chain reaction (qRT-PCR) analysis suggested that StATG18 subfamily genes exhibit differential expression in various tissues and organs of potato plants. When exposed to heat stress, their expression pattern was observed in the root, stem, and leaf. Based on a higher expression profile, the StATG18a gene was further analyzed under heat stress in potatoes. The subcellular localization analysis of StATG18a revealed its presence in both the cytoplasm and nucleus. In addition, StATG18a altered the growth indicators, physiological characteristics, and photosynthesis of potato plants under heat stresses. In conclusion, this work offers a thorough assessment of StATG18 subfamily genes and provides essential recommendations for additional functional investigation of autophagy-associated genes in potato plants. Moreover, these results also contribute to our understanding of the potential mechanism and functional validation of the StATG18a gene's persistent tolerance to heat stress in potato plants.

10.
J Gastrointest Oncol ; 15(4): 1545-1555, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39279933

RESUMEN

Background: Tumor budding (TB) has been shown to be a poor prognostic indicator after colorectal cancer (CRC) surgery. The aim of the present study is to evaluate the predictive role of morphological features (e.g., the number, structure, and location of tumor buds, and their reaction with the extracellular mesenchyme) in postoperative adjuvant chemotherapy in surgically resectable stage II CRC. Methods: Between 2016 and 2019, 336 patients with stage II CRC who underwent radical surgery were enrolled in this study. TB status was determined according to the criteria adopted at the 2016 International Tumor Budding Consensus Conference (ITBCC). We retrospectively recorded all the clinical and pathological data and assessed the effect of different types of TB status on patients' recurrence-free survival (RFS) and overall survival (OS). Results: Of the 336 patients, 173, 88, and 75 were budding grade 1 (BD1), BD2, and BD3, respectively. The 5-year RFS rates were 84.6%, 81.2%, and 68.0% (P=0.01), and the 5-year OS rates were 91.0%, 83.3%, and 76.2% (P=0.007) in BD1, BD2, and BD3, respectively. TB grade was strongly associated with vascular invasion status and mucinous adenocarcinoma, and BD3 was detected in 51.7% of patients with positive vascular invasion. The multivariate analysis showed that only age, perineural invasion, and TB grade [BD2 vs. BD1, hazard ratio (HR) =1.468, 95% confidence interval (CI): 0.703-3.063, P=0.30; BD3 vs. BD1, HR =2.310, 95% CI: 1.154-4.625, P=0.01] had an independent effect on RFS. In addition, the Kaplan-Meier curve analysis showed that BD3 patients had the worst RFS (P=0.01). The OS of the adjuvant chemotherapy group was significantly improved compared to that of the surgery-only group in the BD1/2 patients (HR =0.278, 95% CI: 0.114-0.676, P=0.005) but not in the BD3 patients with significant interaction (Pinteraction=0.03). Conclusions: Our results indicate that TB could play a subsidiary role in selecting stage II CRC patients who could achieve a favorable prognosis with chemotherapy.

11.
Artículo en Inglés | MEDLINE | ID: mdl-39285535

RESUMEN

INTRODUCTION: The aim of this study was to investigate the presence of aortic isthmus flow reversal and its associated factors in fetuses with positive and false-positive coarctation of the aorta (CoA) compared with normal controls. MATERIAL AND METHODS: Pregnant women with fetuses suspected of CoA and normal control were enrolled, and these women experienced prenatal ultrasound scan and followed up for 6 months after birth to confirm the presence of CoA. All the ultrasound parameters were analyzed. RESULTS: A total of 134 pregnant women were enrolled, with 43 CoA-positive fetuses and 91 CoA false-positive fetuses, and 334 matched pregnant women were enrolled in the control group. Aortic isthmus flow reversal occurred in 28 (65.1%) fetuses in the CoA-positive group, significantly (p < 0.05) more than in the false-positive (37 or 40.7%) or control group (64 or 19.2%). Aortic isthmus flow reversal was mostly in the full systole (n = 17 or 60.7%) or late systole and early-middle diastole (n = 10 or 35.7%) in the CoA-positive fetuses (n = 27 or 96.4%), significantly (p < 0.001) different from that in the false-positive or control group. The aortic isthmus flow reversal peak systolic velocity (PSV), flow volume, and ratio of reversed flow/forward flow were significantly (p < 0.05) increased in the CoA-positive and false-positive groups than in the control group. The aortic isthmus flow reversal incidence was significantly (p < 0.05) correlated with the middle cerebral artery (MCA) PSV in the total three groups or in the false-positive group but was significantly (p < 0001) negatively correlated with the MCA resistance index (RI) in the CoA-positive group. The incidence of the aortic isthmus flow reversal was significantly (p < 0.05) positively correlated with the umbilical artery (UA) RI in the false-positive group and with the UA RI in the total three groups. Independently associated factors for aortic isthmus flow reversal were isthmic flow volume/CCO (combined cardiac output) in the CoA-positive group. CONCLUSIONS: Reversal of flow in the aortic isthmus is much more common in true-positive cases of CoA as compared to controls, and isthmic flow reversal in the full systolic phase only suggests presence of CoA. The aortic isthmic reversed flow volume accounts for over half of the isthmic forward flow volume in the CoA-positive fetuses than in the normal controls.

12.
Magn Reson Med ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285623

RESUMEN

PURPOSE: To develop a model-based motion correction (MoCo) method that does not need an analytical signal model to improve the quality of cardiac multi-parametric mapping. METHODS: The proposed method constructs a hybrid loss that includes a dictionary-matching loss and a signal low-rankness loss, where the former registers the multi-contrast original images to a set of motion-free synthetic images and the latter forces the deformed images to be spatiotemporally coherent. We compared the proposed method with non-MoCo, a pairwise registration method (Pairwise-MI), and a groupwise registration method (pTVreg) via a free-breathing Multimapping dataset of 15 healthy subjects, both quantitatively and qualitatively. RESULTS: The proposed method achieved the lowest contour tracking errors (epicardium: 2.00 ± 0.39 mm vs 4.93 ± 2.29 mm, 3.50 ± 1.26 mm, and 2.61 ± 1.00 mm, and endocardium: 1.84 ± 0.34 mm vs 4.93 ± 2.40 mm, 3.43 ± 1.27 mm, and 2.55 ± 1.09 mm for the proposed method, non-MoCo, Pairwise-MI, and pTVreg, respectively; all p < 0.01) and the lowest dictionary matching errors among all methods. The proposed method also achieved the highest scores on the visual quality of mapping (T1: 4.74 ± 0.33 vs 2.91 ± 0.82, 3.58 ± 0.87, and 3.97 ± 1.05, and T2: 4.48 ± 0.56 vs 2.59 ± 0.81, 3.56 ± 0.93, and 4.14 ± 0.80 for the proposed method, non-MoCo, Pairwise-MI, and pTVreg, respectively; all p < 0.01). Finally, the proposed method had similar T1 and T2 mean values and SDs relative to the breath-hold reference in nearly all myocardial segments, whereas all other methods led to significantly different T1 and T2 measures and increases of SDs in multiple segments. CONCLUSION: The proposed method significantly improves the motion correction accuracy and mapping quality compared with non-MoCo and alternative image-based methods.

13.
Int J Biol Macromol ; 279(Pt 2): 135258, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39233166

RESUMEN

Moisture-induced electricity generation (MEG), which can directly harvest electricity from moisture, is considered as an effective strategy for alleviating the growing energy crisis. Recently, tremendous efforts have been devoted to developing MEG active materials from wood lignocellulose (WLC) due to its excellent properties including environmental friendliness, sustainability, and biodegradability. This review comprehensively summarizes the recent advances in MEG based on WLC (wood, cellulose, lignin, and woody biochar), covering its principles, preparation, performances, and applications. In detail, the basic working mechanisms of MEG are discussed, and the natural features of WLC and their significant advantages in the fabrication of MEG active materials are emphasized. Furthermore, the recent advances in WLC-based MEG for harvesting electrical energy from moisture are specifically discussed, together with their potential applications (sensors and power sources). Finally, the main challenges of current WLC-based MEG are presented, as well as the potential solutions or directions to develop highly efficient MEG from WLC.

14.
Sci Transl Med ; 16(763): eadl3598, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39231239

RESUMEN

With the revolutionary progress of immune checkpoint inhibitors (ICIs) in non-small cell lung cancer, identifying patients with cancer who would benefit from ICIs has become critical and urgent. Here, we report protein tyrosine phosphatase receptor type T (PTPRT) loss as a precise and convenient predictive marker independent of PD-L1 expression for anti-PD-1/PD-L1 axis therapy. Anti-PD-1/PD-L1 axis treatment markedly increased progression-free survival in patients with PTPRT-deficient tumors. PTPRT-deficient tumors displayed cumulative DNA damage, increased cytosolic DNA release, and higher tumor mutation burden. Moreover, the tyrosine residue 240 of STING was identified as a direct substrate of PTPRT. PTPRT loss elevated phosphorylation of STING at Y240 and thus inhibited its proteasome-mediated degradation. PTPRT-deficient tumors released more IFN-ß, CCL5, and CXCL10 by activation of STING pathway and increased immune cell infiltration, especially of CD8 T cells and natural killer cells, ultimately enhancing the efficacy of anti-PD-1 therapy in multiple subcutaneous and orthotopic tumor mouse models. The response of PTPRT-deficient tumors to anti-PD-1 therapy depends on the tumor-intrinsic STING pathway. In summary, our findings reveal the mechanism of how PTPRT-deficient tumors become sensitive to anti-PD-1 therapy and highlight the biological function of PTPRT in innate immunity. Considering the prevalence of PTPRT mutations and negative expression, this study has great value for patient stratification and clinical decision-making.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Proteínas de la Membrana , Receptor de Muerte Celular Programada 1 , Transducción de Señal , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Humanos , Animales , Proteínas de la Membrana/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Transducción de Señal/efectos de los fármacos , Receptor de Muerte Celular Programada 1/metabolismo , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Ratones , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Línea Celular Tumoral , Fosforilación , Femenino
15.
Mol Ther ; 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39217416

RESUMEN

Programmed death-ligand 1 (PD-L1) on tumor-derived small extracellular vesicles (sEVs) limits therapeutic effectiveness by interacting with the PD-1 receptor on host immune cells. Targeting the secretion of sEV PD-L1 has emerged as a promising strategy to enhance immunotherapy. However, the lack of small-molecule inhibitors poses a challenge for clinical translation. In this study, we developed a target and phenotype dual-driven high-throughput screening strategy that combined virtual screening with nanoflow-based experimental verification. We identified ibuprofen (IBP) as a novel inhibitor that effectively targeted sEV PD-L1 secretion. IBP disrupted the biogenesis and secretion of PD-L1+ sEVs in tumor cells by physically interacting with a critical regulator of sEV biogenesis, hepatocyte growth factor-regulated tyrosine kinase substrate. Notably, the mechanism of action of IBP is distinct from its commonly known targets, cyclooxygenases. Administration of IBP stimulated antitumor immunity and enhanced the efficacy of anti-PD-1 therapy in melanoma and oral squamous cell carcinoma mouse models. To address potential adverse effects, we further developed an IBP gel for topical application, which demonstrated remarkable therapeutic efficacy when combined with anti-PD-1 treatment. The discovery of this specific small inhibitor provides a promising avenue for establishing durable, systemic antitumor immunity.

16.
Sci Total Environ ; : 176237, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39277014

RESUMEN

How to improve the growth efficiency of microalgae is the bottleneck of microalgae large-scale application. The addition of trace substances can promote the growth of microalgae, but there is no suitable model that can be used to predict the effects of trace substance concentrations on the growth of microalgae. In the present study, a mathematical model based on hormesis is proposed to describe the effects produced by trace substances on the biomass of microalgae and applied to assess the dose-response of four phytohormones on Scenedesmus sp. LX1 with a high coefficient of determination (R2 ≥ 0.90). Several new mathematical parameters, such as starting effective dose (SD), inflection point dose (PD), concentration for 0 % of maximal effect, end effective dose (ED), maximum stimulatory effect (MSE), and maximum inhibitory effect (MIE), were extracted and useful to help researchers in applying trace substances to assist in the production of microalgal biomass for data reference and prediction. In concrete terms, the above model parameters can be well applied to screen the trace substances, dominant algal species and determine the concentration range. This study provides valuable insights into the potential of using phytohormones to enhance the biomass production of microalgae and offers a new approach to optimizing the culture of microalgae.

17.
Talanta ; 281: 126876, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39277940

RESUMEN

Due to the increasing crop losses caused by common and newly emerging phytopathogens, there is a pressing need for the development of rapid and reliable methods for phytopathogen detection and analysis. Leveraging advancements in biochemical engineering technologies and nanomaterial sciences, researchers have put considerable efforts on utilizing biofunctionalized magnetic micro- and nanoparticles (MPs) to develop rapid and reliable systems for phytopathogen detection. MPs facilitate the rapid, high-throughput analysis and in-field applications, while the biomacromolecules, which play key roles in the biorecognitions, interactions and signal amplification, determine the specificity, sensitivity, reliability, and portability of pathogen detection systems. The integration of MPs and biomacromolecules provides dimensionality- and composition-dependent properties, representing a novel approach to develop phytopathogen detection systems. In this review, we summarize and discuss the general properties, synthesis and characterization of MPs, and focus on biomacromolecule-functionalized MPs as well as their representative applications for phytopathogen detection and analysis reported over the past decade. Extensively studied bioreceptors, such as antibodies, phages and phage proteins, nucleic acids, and glycans that are involved in the recognitions and interactions, are covered and discussed. Additionally, the integration of MPs-based detection system with portable microfluidic devices to facilitate their in-field applications is also discussed. Overall, this review focuses on biomacromolecule-functionalized MPs and their applications for phytopathogen detection, aiming to highlight their potential in developing advanced biosensing systems for effective plant protection.

18.
Eur J Med Chem ; 279: 116858, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39278125

RESUMEN

Epidermal growth factor receptor (EGFR) is a validated target for non-small-cell lung cancer (NSCLC). However, the treatment for EGFR-C797S mutation induced by third-generation EGFR inhibitors remains a concern. Therefore, the development of the fourth-generation EGFR inhibitors to overcome the EGFR-C797S mutation has great potential for clinical treatment. In this article, we designed and synthesized a series of diphenyl ether substituted quinazolin-4-amine derivatives that simultaneously occupy the ATP binding pocket and the allosteric site of EGFR. Among the newly synthesized compounds, 9d displayed excellent kinase activity against EGFRL858R/T790M/C797S with an IC50 value of 0.005 µM, and exhibited anti-proliferation activity in BaF3-EGFRL858R/T790M/C797S cells with the IC50 value of 0.865 µM. Furthermore, 9d could suppress phosphorylation of EGFR and induce cell apoptosis and cycle arrest at G2 phase in a dose-dependent manner in BaF3-EGFRL858R/T790M/C797S cells. More importantly, 9d displayed significant antitumor effects in BaF3-EGFRL858R/T790M/C797S xenograft mouse model (30 mg/kg, TGI = 71.14 %). All the results indicated compound 9d might be a novel fourth-generation EGFR inhibitor for further development in overcoming the EGFR-C797S resistance mutation.

20.
Plants (Basel) ; 13(17)2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39273978

RESUMEN

Alfin-like proteins (ALs) form a plant-specific transcription factor (TF) gene family involved in the regulation of plant growth and development, and abiotic stress response. In this study, 30 ALs were identified in Brassica napus ecotype 'Zhongshuang 11' genome (BnaALs), and unevenly distributed on 15 chromosomes. Structural characteristic analysis showed that all of the BnaALs contained two highly conserved domains: the N terminal DUF3594 domain and the C-terminal PHD-finger domain. The BnaALs were classified into four groups (Group I-IV), supported by conserved intron-exon and protein motif structures in each group. The allopolyploid event between B. oleracea and B. rapa ancestors and the small-scale duplication events in B. napus both contributed to the large BnaALs expansion. The promoter regions of BnaALs contained multiple abiotic stress cis-elements. The BnaALs in I-IV groups were mainly expressed in cotyledon, petal, root, silique, and seed tissues, and the duplicated gene pairs shared highly similar expression patterns. RNA-seq and RT-qPCR analysis showed that BnaALs were obviously induced by low nitrogen (LN) and low phosphorus (LP) treatments in roots. Overexpressing BnaAL02 and BnaAL28 in Arabidopsis demonstrated their functions in response to LN and LP stresses. BnaAL28 enhanced primary roots' (PRs) length and lateral roots' (LRs) number under LP and LN conditions, where BnaAL02 can inhibit LR numbers under the two conditions. They can promote root hair (RH) elongation under LP conditions; however, they suppressed RH elongation under LN conditions. Our result provides new insight into the functional dissection of this family in response to nutrient stresses in plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA