Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Light Sci Appl ; 11(1): 273, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36104318

RESUMEN

The rapid development of space-time-coding metasurfaces (STCMs) offers a new avenue to manipulate spatial electromagnetic beams, waveforms, and frequency spectra simultaneously with high efficiency. To date, most studies are primarily focused on harmonic generations and independent controls of finite-order harmonics and their spatial waves, but the manipulations of continuously temporal waveforms that include much rich frequency spectral components are still limited in both theory and experiment based on STCM. Here, we propose a theoretical framework and method to generate frequency-modulated continuous waves (FMCWs) and control their spatial propagation behaviors simultaneously via a novel STCM with nonlinearly periodic phases. Since the carrier frequency of FMCW changes with time rapidly, we can produce customized time-varying reflection phases at will by the required FMCW under the illumination of a monochromatic wave. More importantly, the propagation directions of the time-varying beams can be controlled by encoding the metasurface with different initial phase gradients. A programmable STCM prototype with a full-phase range is designed and fabricated to realize reprogrammable FMCW functions, and experimental results show good agreement with the theoretical analyses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA