Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Autophagy ; : 1-20, 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39245438

RESUMEN

Epidemiology has shown a strong relationship between fine particulate matter (PM) exposure and cardiovascular disease. However, it remains unknown whether PM aggravates myocardial ischemia-reperfusion (I/R) injury, and the related mechanisms are unclear. Our previous study has shown that adipose stem cell-derived exosomes (ADSC-Exos) contain high levels of Mir221 and Mir222. The present study investigated the effects of PM exposure on I/R-induced cardiac injury through mitophagy and apoptosis, as well as the potential role of Mir221 and Mir222 in ADSC-Exos. Wild-type, mir221- and mir222-knockout (KO), and Mir221- and Mir222-overexpressing transgenic (TG) mice were intratracheally injected with PM (10 mg/kg). After 24 h, mice underwent left coronary artery ligation for 30 min, followed by 3 h of reperfusion (I/R). H9c2 cardiomyocytes were cultured under 1% O2 for 6 h, then reoxygenated for 12 h (hypoxia-reoxygenation [H/R]). PM aggravated I/R (or H/R) cardiac injury by increasing ROS levels and causing mitochondrial dysfunction, which increased the expression of mitochondrial fission-related proteins (DNM1L/Drp1 and MFF) and mitophagy-related proteins (BNIP3 and MAP1LC3B/LC3B) in vivo and in vitro. Treatment with ADSC-Exos or Mir221- and Mir222-mimics significantly reduced PM+I/R-induced cardiac injury. Importantly, ADSC-Exos contain Mir221 and Mir222, which directly targets BNIP3, MAP1LC3B/LC3B, and BBC3/PUMA, decreasing their expression and ultimately reducing cardiomyocyte mitophagy and apoptosis. The present data showed that ADSC-Exos treatment regulated mitophagy and apoptosis through the Mir221 and Mir222-BNIP3-MAP1LC3B-BBC3/PUMA pathway and significantly reduced the cardiac damage caused by PM+I/R. The present study revealed the novel therapeutic potential of ADSC-Exos in alleviating PM-induced exacerbation of myocardial I/R injury.Abbreviation: ADSC-Exos: adipose-derived stem cell exosomes; AL: autolysosome; ATP: adenosine triphosphate; BBC3/PUMA: BCL2 binding component 3; BNIP3: BCL2/adenovirus E1B interacting protein 3; CASP3: caspase 3; CASP9: caspase 9; CDKN1B/p27: cyclin dependent kinase inhibitor 1B; CVD: cardiovascular disease; DCFH-DA: 2',7'-dichlorodihydrofluorescein diacetate; DHE: dihydroethidium; DNM1L/Drp1: dynamin 1-like; EF: ejection fraction; FS: fractional shortening; H/R: hypoxia-reoxygenation; I/R: ischemia-reperfusion; LDH: lactate dehydrogenase; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MFF: mitochondrial fission factor; miRNA: microRNA; NAC: N-acetylcysteine; OCR: oxygen consumption rate; PIK3C3/Vps34: phosphatidylinositol 3-kinase catalytic subunit type 3; PM: particulate matter; PRKAA1/AMPK: protein kinase AMP-activated catalytic subunit alpha 1; ROS: reactive oxygen species; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; TRP53/p53: transformation related protein 53; TUNEL: terminal deoxynucleotidyl transferase dUTP nick end labeling.

2.
Cell Commun Signal ; 22(1): 353, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970072

RESUMEN

Copper is a crucial trace element that plays a role in various pathophysiological processes in the human body. Copper also acts as a transition metal involved in redox reactions, contributing to the generation of reactive oxygen species (ROS). Under prolonged and increased ROS levels, oxidative stress occurs, which has been implicated in different types of regulated cell death. The recent discovery of cuproptosis, a copper-dependent regulated cell death pathway that is distinct from other known regulated cell death forms, has raised interest to researchers in the field of cancer therapy. Herein, the present work aims to outline the current understanding of cuproptosis, with an emphasis on its anticancer activities through the interplay with copper-induced oxidative stress, thereby providing new ideas for therapeutic approaches targeting modes of cell death in the future.


Asunto(s)
Antineoplásicos , Cobre , Estrés Oxidativo , Cobre/metabolismo , Humanos , Estrés Oxidativo/efectos de los fármacos , Antineoplásicos/farmacología , Animales , Especies Reactivas de Oxígeno/metabolismo , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología
3.
Int J Nanomedicine ; 18: 7379-7402, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38084125

RESUMEN

Purpose: Particulate matter (PM) 2.5, harmful air pollutants, and diabetes are associated with high morbidity and mortality from cardiovascular disease (CVD). However, the molecular mechanisms underlying the combined effects of PM and diabetes on CVD remain unclear. Methods: Endothelial cells (ECs) treated with high glucose (HG) and PM mimic hyperglycemia and air pollutant exposure in CVD. Endothelial inflammation was evaluated by Western blot and immunofluorescence of ICAM-1 expression and monocyte adhesion. The mechanisms underlying endothelial inflammation were elucidated through MitoSOX Red analysis, JC-1 staining, MitoTracker analysis, and Western blot analysis of mitochondrial fission-related, autophagy-related, and mitophagy-related proteins. Furthermore. nanocurcumin (NCur) pretreatment was used to test if it has a protective effect. Results: ECs under co-exposure to HG and PM increased ICAM-1 expression and monocyte adhesion, whereas NCur pretreatment attenuated these changes and improved endothelial inflammation. PM exposure increased mitochondrial ROS levels, worsened mitochondrial membrane potential, promoted mitochondrial fission, induced mitophagy, and aggravated inflammation in HG-treated ECs, while NCur reversed these changes. Also, HG and PM-induced endothelial inflammation is through the JNK signaling pathway and miR-221/222 specifically targeting ICAM-1 and BNIP3. PM exposure also aggravated mitochondrial ROS levels, mitochondrial fission, mitophagy, and endothelial inflammation in STZ-induced hyperglycemic mice, whereas NCur attenuated these changes. Conclusion: This study elucidated the mechanisms underlying HG and PM-induced endothelial inflammation in vitro and in vivo. HG and PM treatment increased mitochondrial ROS, mitochondrial fission, and mitophagy in ECs, whereas NCur reversed these conditions. In addition, miR-221/222 plays a role in the amelioration of endothelial inflammation through targeting Bnip3 and ICAM-1, and NCur pretreatment can modulate miR-221/222 levels. Therefore, NCur may be a promising approach to intervene in diabetes and air pollution-induced CVD.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus , MicroARNs , Ratones , Animales , Células Endoteliales , Molécula 1 de Adhesión Intercelular/metabolismo , Material Particulado/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Inflamación/inducido químicamente , Inflamación/metabolismo , Mitocondrias/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Glucosa/metabolismo , Diabetes Mellitus/metabolismo , Enfermedades Cardiovasculares/metabolismo
4.
Oral Dis ; 29(2): 528-541, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34181793

RESUMEN

OBJECTIVES: To investigate the anticancer effects and underlying mechanisms of surfactin on human oral squamous cell carcinoma (OSCC). MATERIALS AND METHODS: The capacity of surfactin to induce apoptosis, autophagy, and cell cycle arrest of two different human OSCC cell lines was investigated by cell viability, acridine orange staining, and cell cycle regulatory protein expression, respectively. The signaling network underlying these processes were determined by the analysis of reactive oxygen species (ROS) generation, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, endoplasmic reticulum (ER) stress-related protein levels, calcium release, mitogen-activated protein kinases activation, and cell cycle regulatory protein expression through corresponding reagents and experiments under various experimental conditions using specific pharmaceutical inhibitors or small interfering RNAs. RESULTS: Surfactin was able to induce apoptosis through NADPH oxidase/ROS/ER stress/calcium-downregulated extracellular signal-regulated kinases 1/2 pathway. Surfactin could also lead to autophagy that shared the common regulatory signals with apoptosis pathway until calcium node. Cell cycle arrest at G2 /M phase caused by surfactin was demonstrated through p53 and p21 accumulation combined p34cdc2 , phosphorylated p34cdc2 , and cyclin B1 inhibition, which was regulated by NADPH oxidase-derived ROS. CONCLUSION: Surfactin could induce apoptosis, autophagy, and cell cycle arrest in ROS-dependent manner, suggesting a multifaced anticancer agent for OSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas de Cabeza y Cuello , Especies Reactivas de Oxígeno/metabolismo , Calcio , Puntos de Control de la Fase G2 del Ciclo Celular , Puntos de Control del Ciclo Celular , Apoptosis , Proteínas de Ciclo Celular , Autofagia , NADPH Oxidasas/farmacología , Línea Celular Tumoral , Proliferación Celular
5.
Antioxidants (Basel) ; 11(8)2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-36009338

RESUMEN

The growing increases in the global life expectancy and the incidence of chronic diseases as a direct consequence have highlighted a demand to develop effective strategies for promoting the health of the aging population. Understanding conserved mechanisms of aging across species is believed helpful for the development of approaches to delay the progression of aging and the onset of age-related diseases. Mitochondrial hormesis (or mitohormesis), which can be defined as an evolutionary-based adaptive response to low-level stress, is emerging as a promising paradigm in the field of anti-aging. Depending on the severity of the perceived stress, there are varying levels of hormetic response existing in the mitochondria called mitochondrial stress response. Hydrogen sulfide (H2S) is a volatile, flammable, and toxic gas, with a characteristic odor of rotten eggs. However, H2S is now recognized an important gaseous signaling molecule to both physiology and pathophysiology in biological systems. Recent studies that elucidate the importance of H2S as a therapeutic molecule has suggested its protective effects beyond the traditional understanding of its antioxidant properties. H2S can also be crucial for the activation of mitochondrial stress response, postulating a potential mechanism for combating aging and age-related diseases. Therefore, this review focuses on highlighting the involvement of H2S and its sulfur-containing derivatives in the induction of mitochondrial stress response, suggesting a novel possibility of mitohormesis through which this gaseous signaling molecule may promote the healthspan and lifespan of an organism.

6.
Part Fibre Toxicol ; 19(1): 25, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35351169

RESUMEN

BACKGROUND: Cardiovascular diseases (CVDs) are related to particulate matter (PM2.5) exposure. Researchers have not clearly determined whether hyperglycemia, a hallmark of diabetes, exacerbates PM2.5-induced endothelial damage. Thus, this study aimed to investigate the combined effects of PM2.5 and high glucose on endothelial damage. RESULTS: Here, we treated human umbilical vein endothelial cells (HUVECs) with 30 mM high glucose and 50 µg/mL PM (HG + PM) to simulate endothelial cells exposed to hyperglycemia and air pollution. First, we showed that HUVECs exposed to PM under high glucose conditions exhibited significant increases in cell damage and apoptosis compared with HUVECs exposed to PM or HG alone. In addition, PM significantly increased the production of reactive oxygen species (ROS) in HUVECs and mitochondria treated with HG and decreased the expression of superoxide dismutase 1 (SOD1), a free radical scavenging enzyme. The coexposure group exhibited significantly increased ROS production in cells and mitochondria, a lower mitochondrial membrane potential, and increased levels of the autophagy-related proteins p62, microtubule-associated protein 1 light chain 3ß (LC3B), and mitophagy-related protein BCL2 interacting protein 3 (Bnip3). Moreover, autophagosome-like structures were observed in the HG + PM group using transmission electron microscopy. The expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) were also increased through the JNK/p38 signaling pathway in the HG + PM group. As a ROS scavenger, vitamin D treatment effectively protected cells under HG and PM conditions by increasing cell viability, reducing mitochondrial ROS production, and suppressing the formation of mitophagy and inflammation. Furthermore, diabetes was induced in mice by administering streptozotocin (STZ). Mice were treated with PM by intratracheal injection. Vitamin D effectively alleviated oxidative stress, mitophagy, and inflammation in the aortas of mice treated with STZ and PM. CONCLUSION: Taken together, simultaneous exposure to PM and high glucose exerts significant harmful effects on endothelial cells by inducing ROS production, mitophagy, and inflammation, while vitamin D reverses these effects.


Asunto(s)
Mitofagia , Vitamina D , Animales , Glucosa/metabolismo , Glucosa/toxicidad , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inflamación/metabolismo , Ratones , Material Particulado/toxicidad , Vitamina D/metabolismo , Vitamina D/farmacología
7.
Biochem Pharmacol ; 198: 114978, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35218740

RESUMEN

Abdominal aortic aneurysm (AAA) is a common inflammatory vascular disease. Angiotensin II (Ang II) involves in AAA progression by promoting the proliferation and migration of vascular smooth muscle cells, the degradation of extracellular matrices, and the generation of ROS to lead to vascular inflammation. Carbon monoxide releasing molecule-2 (CORM-2) is known to exert anti-inflammatory and antioxidant activities. However, it remains unclear whether CORM-2 can suppress Ang II-induced vascular inflammation to prevent AAA progression. Therefore, this study aimed to investigate the vasoprotective effects of CORM-2 against Ang II-induced inflammatory responses of human aortic smooth muscle cells (HASMCs) and the underlying mechanisms of those effects. The results showed that Ang II induced inflammatory responses of HASMCs via NADPH oxidase- and mitochondria-derived ROS/NF-κB/IL-6/Jak2/Stat3 pathway which was attenuated by the pretreatment with CORM-2. Additionally, CORM-2 further exhibited anti-inflammatory activities in Ang II-stimulated HASMCs, as indicated by the reduction of monocyte adhesion to HASMCs and migration of HASMCs via the suppression of ICAM-1 and VCAM-1 as well as MMP-2 and MMP-9 levels, respectively. Moreover, Ang II-induced COX-2-mediated PGE2 secretion was also inhibited by the pretreatment with CORM-2. Importantly, our data demonstrated that CORM-2 reversed Ang II-induced IL-6 overexpression dependent on Nrf2 activation and HO-1 expression. Taken together, the present study indicates that CORM-2-induced Nrf2/HO-1 alleviates IL-6/Jak2/Stat3-mediated inflammatory responses to Ang II by inhibiting NADPH oxidase- and mitochondria-derived ROS, suggesting that CORM-2 is a promising pharmacologic candidate to reverse the pathological changes involved in the inflammation of vessel wall for the prevention and treatment of AAA.


Asunto(s)
Angiotensina II , NADPH Oxidasas , Angiotensina II/metabolismo , Antiinflamatorios/uso terapéutico , Monóxido de Carbono/metabolismo , Humanos , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Interleucina-6/metabolismo , Janus Quinasa 2/metabolismo , Mitocondrias/metabolismo , Miocitos del Músculo Liso , NADPH Oxidasas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Compuestos Organometálicos , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción STAT3/metabolismo
8.
Cell Biol Toxicol ; 38(3): 427-450, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34255241

RESUMEN

Previous work has shown an association between vitamin D3 deficiency and an increased risk for acquiring various inflammatory diseases. Vitamin D3 can reduce morbidity and mortality in these patients via different mechanisms. Lung inflammation is an important event in the initiation and development of respiratory disorders. However, the anti-inflammatory effects of vitamin D3 and the underlying mechanisms remained to be determined. The purpose of this study was to examine the effects and mechanisms of action of vitamin D3 (Vit. D) on the expression of intercellular adhesion molecule-1 (ICAM-1) in vitro and in vivo with or without tumor necrosis factor α (TNF-α) treatment. Pretreatment with Vit. D reduced the expression of ICAM-1 and leukocyte adhesion in TNF-α-treated A549 cells. TNF-α increased the accumulation of mitochondrial reactive oxygen species (mtROS), while Vit. D reduced this effect. Pretreatment with Vit. D attenuated TNF-α-induced mitochondrial fission, as shown by the increased expression of mitochondrial fission factor (Mff), phosphorylated dynamin-related protein 1 (p-DRP1), and mitophagy-related proteins (BCL2/adenovirus E1B 19 kDa protein-interacting protein 3, Bnip3) in A549 cells. Inhibition of DRP1 or Mff significantly decreased ICAM-1 expression. In addition, we found that Vit. D decreased TNF-α-induced ICAM-1 expression, mitochondrial fission, and mitophagy via the AKT and NF-κB pathways. Moreover, ICAM-1 expression, mitochondrial fission, and mitophagy were increased in the lung tissues of TNF-α-treated mice, while Vit. D supplementation reduced these effects. In this study, we elucidated the mechanisms by which Vit. D reduces the expression of adhesion molecules in models of airway inflammation. Vit. D might be served as a novel therapeutic agent for the targeting of epithelial activation in lung inflammation. Graphical Headlights: • The expression of DRP1 and Mff, mitochondrial fission-related proteins, was increased in TNF-α-treated A549 cells. • The expression of Bnip3 and LC3B, mitophagy-related proteins, was increased in TNF-α-treated A549 cells. • Vit. D pretreatment decreased TNF-α-induced inflammation through the reduction of mitochondrial fission and mitophagy in A549 cells.


Asunto(s)
Neumonía , Factor de Necrosis Tumoral alfa , Animales , Colecalciferol/metabolismo , Colecalciferol/farmacología , Células Epiteliales/metabolismo , Humanos , Inflamación/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Pulmón/metabolismo , Ratones , Dinámicas Mitocondriales , Mitofagia , Neumonía/inducido químicamente , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología
9.
J Periodontal Res ; 56(6): 1185-1199, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34486757

RESUMEN

OBJECTIVE: To evaluate the anti-inflammatory effects of surfactin and underlying mechanisms against particulate matter (PM)-induced inflammatory responses in human gingival fibroblasts (HGFs). BACKGROUND: PM, a major air pollutant, may associate with certain oral diseases possibly by inducing inflammation and oxidative stress. Surfactin, a potent biosurfactant, possesses various biological properties including anti-inflammatory activity. However, the underlying mechanisms are unclear. Also, there is no study investigating the effects of surfactin on PM-induced oral inflammatory responses. As an essential constituent of human periodontal connective tissues which involves immune-inflammatory responses, HGFs serve as useful study models. METHODS: HGFs were pretreated with surfactin prior to PM incubation. The PGE2 production was determined by ELISA, while the protein expression and mRNA levels of COX-2 and upstream regulators were measured using Western blot and real-time PCR, respectively. The transcriptional activity of COX-2 and NF-κB were determined using promoter assay. ROS generation and NADPH oxidase activity were identified by specific assays. Co-immunoprecipitation assay, pharmacologic inhibitors, and siRNA transfection were applied to explore the interplay of molecules. Mice were given one dose of surfactin or different pharmacologic inhibitors, then PM was delivered into the gingiva for three consecutive days. Gingival tissues were obtained for analyzing COX-2 expression. RESULTS: PM-treated HGFs released significantly higher COX-2-dependent PGE2 , which were regulated by TLR2 and TLR4/MyD88/NADPH oxidase/ROS/PI3K/Akt/NF-κB pathway. PM-induced COX-2/PGE2 increase was effectively reversed by surfactin through the disruption of regulatory pathway. Similar inhibitory effects of surfactin was observed in mice. CONCLUSION: Surfactin may elicit anti-inflammatory effects against PM-induced oral inflammatory responses.


Asunto(s)
FN-kappa B , Fosfatidilinositol 3-Quinasas , Animales , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Dinoprostona , Fibroblastos/metabolismo , Encía/metabolismo , Humanos , Ratones , Factor 88 de Diferenciación Mieloide , NADPH Oxidasas , FN-kappa B/metabolismo , Material Particulado , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Receptor Toll-Like 2/genética , Receptor Toll-Like 4
10.
Oxid Med Cell Longev ; 2021: 2855042, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34336088

RESUMEN

Particulate matter (PM), a major air pollutant, may be associated with adverse cardiovascular effects. Reactive oxygen species- (ROS-) dependent proinflammatory cytokine production, such as interleukin-6 (IL-6), is a possible underlying mechanism. Carbon monoxide- (CO-) releasing molecule-2 (CORM-2) which liberates exogenous CO can exert many beneficial effects, particularly anti-inflammation and antioxidant effects. The purpose of this study was to explore the protective effects and underpinning mechanisms of CORM-2 on PM-induced aorta inflammation. Here, human aortic vascular smooth muscle cells (HASMCs) were utilized as in vitro models for the assessment of signaling pathways behind CORM-2 activities against PM-induced inflammatory responses, including Toll-like receptors (TLRs), NADPH oxidase, ROS, nuclear factor-kappa B (NF-κB), and IL-6. The modulation of monocyte adherence and HASMC migration, that are two critical cellular events of inflammatory process, along with their regulators, including intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and matrix metalloproteinase-2 (MMP-2) and MMP-9, in response to PM by CORM-2, were further evaluated. Finally, mice experiments under different conditions were conducted for the in vivo evaluation of CORM-2 benefits on the expression of inflammatory molecules including IL-6, ICAM-1, VCAM-1, MMP-2, and MMP-9. Our results found that PM could induce aorta inflammation in vitro and in vivo, as evidenced by the increase of IL-6 expression that was regulated by the TLR2 and TLR4/NADPH oxidase/ROS/NF-κB signaling pathway, thereby promoting ICAM-1- and VCAM-1-dependent monocyte adhesion and MMP-2- and MMP-9-dependent HASMC migration. Importantly, our experimental models demonstrated that CORM-2-liberated CO effectively inhibited the whole identified PM-induced inflammatory cascade in HASMCs and tissues. In conclusion, CORM-2 treatment may elicit multiple beneficial effects on inflammatory responses of aorta due to PM exposure, thereby providing therapeutic value in the context of inflammatory diseases of the cardiovascular system.


Asunto(s)
Aorta/efectos de los fármacos , Inflamación/tratamiento farmacológico , Interleucina-6/metabolismo , NADPH Oxidasas/efectos de los fármacos , Compuestos Organometálicos/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Animales , Aorta/patología , Humanos , Masculino , Ratones , Compuestos Organometálicos/farmacología
11.
Theranostics ; 11(7): 3131-3149, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33537078

RESUMEN

Rationale: Cardiovascular diseases, such as myocardial infarction (MI), are the leading causes of death worldwide. Reperfusion therapy is the common standard treatment for MI. However, myocardial ischemia/reperfusion (I/R) causes cardiomyocyte injury, including apoptosis and fibrosis. We aimed to investigate the effects of conditioned medium from adipose-derived stem cells (ADSC-CM) on apoptosis and fibrosis in I/R-treated hearts and hypoxia/reoxygenation (H/R)-treated cardiomyocytes and the underlying mechanisms. Methods: ADSC-CM was collected from ADSCs. The effects of intramuscular injection of ADSC-CM on cardiac function, cardiac apoptosis, and fibrosis examined by echocardiography, Evans blue/TTC staining, TUNEL assay, and Masson's trichrome staining in I/R-treated mice. We also examined the effects of ADSC-CM on apoptosis and fibrosis in H/R-treated H9c2 cells by annexin V/PI flow cytometry, TUNEL assay, and immunocytochemistry. Results: ADSC-CM treatment significantly reduced heart damage and fibrosis of I/R-treated mice and H/R-treated cardiomyocytes. In addition, the expression of apoptosis-related proteins, such as p53 upregulated modulator of apoptosis (PUMA), p-p53 and B-cell lymphoma 2 (BCL2), as well as the fibrosis-related proteins ETS-1, fibronectin and collagen 3, were significantly reduced by ADSC-CM treatment. Moreover, we demonstrated that ADSC-CM contains a large amount of miR-221/222, which can target and regulate PUMA or ETS-1 protein levels. Furthermore, the knockdown of PUMA and ETS-1 decreased the induction of apoptosis and fibrosis, respectively. MiR-221/222 overexpression achieved similar results. We also observed that cardiac I/R markedly increased apoptosis and fibrosis in miR-221/222 knockout (KO) mice, while ADSC-CM decreased these effects. The increased phosphorylation of p38 and NF-κB not only mediated myocardial apoptosis through the PUMA/p53/BCL2 pathway but also regulated fibrosis through the ETS-1/fibronectin/collagen 3 pathway. Conclusions: Overall, our results show that ADSC-CM attenuates cardiac apoptosis and fibrosis by reducing PUMA and ETS-1 expression, respectively. The protective effect is mediated via the miR-221/222/p38/NF-κB pathway.


Asunto(s)
Medios de Cultivo Condicionados/farmacología , Células Madre Mesenquimatosas/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Tejido Adiposo/citología , Animales , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Muerte Celular , Fibrosis/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , MicroARNs/metabolismo , Infarto del Miocardio/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocardio/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Proteína Proto-Oncogénica c-ets-1/genética , Proteína Proto-Oncogénica c-ets-1/metabolismo , Reperfusión , Daño por Reperfusión/genética , Células Madre/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
12.
Front Pharmacol ; 11: 604700, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33362559

RESUMEN

Myocardial infarction is the leading cause of morbidity and mortality worldwide. Although myocardial reperfusion after ischemia (I/R) is an effective method to save ischemic myocardium, it can cause adverse reactions, including increased oxidative stress and cardiomyocyte apoptosis. Mitochondrial fission and mitophagy are essential factors for mitochondrial quality control, but whether they play key roles in cardiac I/R injury remains unknown. New pharmacological or molecular interventions to alleviate reperfusion injury are currently considered desirable therapies. Vitamin D3 (Vit D3) regulates cardiovascular function, but its physiological role in I/R-exposed hearts, especially its effects on mitochondrial homeostasis, remains unclear. An in vitro hypoxia/reoxygenation (H/R) model was established in H9c2 cells to simulate myocardial I/R injury. H/R treatment significantly reduced H9c2 cell viability, increased apoptosis, and activated caspase 3. In addition, H/R treatment increased mitochondrial fission, as manifested by increased expression of phosphorylated dynein-related protein 1 (p-Drp1) and mitochondrial fission factor (Mff) as well as increased mitochondrial translocation of Drp1. Treatment with the mitochondrial reactive oxygen species scavenger MitoTEMPO increased cell viability and decreased mitochondrial fission. H/R conditions elicited excessive mitophagy, as indicated by increased expression of BCL2-interacting protein 3 (BNIP3) and light chain (LC3BII/I) and increased formation of autolysosomes. In contrast, Vit D3 reversed these effects. In a mouse model of I/R, apoptosis, mitochondrial fission, and mitophagy were induced. Vit D3 treatment mitigated apoptosis, mitochondrial fission, mitophagy, and myocardial ultrastructural abnormalities. The results indicate that Vit D3 exerts cardioprotective effects against I/R cardiac injury by protecting mitochondrial structural and functional integrity and reducing mitophagy.

13.
Front Cell Dev Biol ; 8: 569150, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33344446

RESUMEN

Cardiovascular disease is a major health problem in industrialized and developing countries and is the leading cause of death and disability. Myocardial ischemia/reperfusion (I/R) causes cardiomyocyte damage such as apoptosis and hypertrophy. The purpose of this study was to investigate the effects of exosomes from adipose-derived stem cells (ADSC-Exo) on hearts from I/R mice and to explore the underlying mechanisms. ADSC-Exo significantly decreased I/R-induced cardiomyocyte apoptosis and hypertrophy, as detected by TdT-mediated dUTP nick end-labeling (TUNEL) and wheat germ agglutinin (WGA) staining, respectively. In addition, the expression of apoptosis-related proteins p-p53 and PUMA and hypertrophy-related proteins ETS-1 and ANP were significantly reduced in the cardiomyocytes of ADSC-Exo-treated I/R mice compared to those of control mice. Both PUMA and ETS-1 are reported to be target genes for miR-221/222. I/R operation significantly reduced miR-221/222 expression, while ADSC-Exo treatment increased miR-221/222 expression, as detected by RT-qPCR. We also observed that cardiac I/R operation markedly increased cell apoptosis and hypertrophy in miR-221/222 knockout (KO) mice, while ADSC-Exo reduced the effects of I/R operation. Furthermore, ADSC-Exo protected H9c2 cardiomyocytes from H2O2-induced damage by reducing apoptosis and hypertrophy in vitro. H2O2 treatment significantly reduced miR-221/222 expression, while ADSC-Exo treatment reversed this effect in H9c2 cells. ADSC-Exo treatment decreased H2O2-induced PUMA and ETS-1 expression. Compared with control treatment, I/R treatment significantly reduced p-AKT and increased p-p65, while ADSC-Exo and miR-221/222 mimics attenuated these effects. The AKT activator SC79 and p65 inhibitor Bay 11-7082 reduced H2O2-induced cell apoptosis and hypertrophy. Based on these findings, ADSC-Exo prevents cardiac I/R injury through the miR-221/miR-222/PUMA/ETS-1 pathway. Therefore, ADSC-Exo is an effective inhibitor of I/R-induced heart injury.

14.
J Cancer ; 11(24): 7253-7263, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193889

RESUMEN

Recently, ambient air particulate matter (PM) has been shown to increase the risk of oral cancer. The most common malignant tumor in the oral cavity is oral squamous cell carcinoma (OSCC). Recent studies have revealed that surfactin, a cyclic lipopeptide generated by Bacillus subtilis, has anti-inflammatory and anti-cancer properties. However, the exact anti-cancer effects of surfactin on human OSCC and underlying molecular mechanisms remain largely unknown. In the present study, we found that treatment of SCC4 and SCC25 cells (human OSCC cell lines) with surfactin reduced the viability of SCC4 and SCC25 cells by induction of apoptosis. Surfactin-induced apoptosis was associated with caspase activation and poly(ADP-ribose) polymerase (PARP) cleavage and was regulated by the mitochondrial pathway, exemplified by mitochondrial depolarization, mitochondrial-derived reactive oxidative species (ROS) production, cytochrome c release, up-regulation of Bad and Bax, and down-regulation of Bcl-2. Surfactin induced NADPH oxidase-dependent ROS generation, which appeared essential for the activation of the mitochondrial pathway. Surfactin-induced mitochondrial-derived ROS generation was associated with JNK1/2 activation. After treatment with surfactin, ROS caused JNK1/2-dependent cell death of SCC4 and SCC25 cells. Taken together, our findings suggest that surfactin induces mitochondria associated apoptosis of human OSCC cell lines, and surfactin may be a potential chemotherapeutic agent for future OSCC treatment.

15.
J Cancer ; 11(20): 6038-6049, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32922544

RESUMEN

Recently, many studies have indicated that ambient air particulate matter (PM) can increase the risk of oral cancer. The most common malignant tumor in the oral cavity is oral squamous cell carcinoma (OSCC). Usually, cancer cell migration/invasion is the most important cause of cancer mortality. Matrix metalloproteinase-2 (MMP-2) and MMP-9 have been shown to play important roles in regulating metastasis and the tumor microenvironment. Here, we studied the anti-cancer effects of surfactin, a cyclic lipopeptide generated by Bacillus subtilis, on cancer cell migration and invasion. Surfactin suppressed PM-promoted cell migration and invasion and colony formation of SCC4 and SCC25 human oral squamous cell carcinoma cell lines. We observed that PM induced MMP-2 and MMP-9 expression, which was inhibited by surfactin. Transfection with p65, p50, c-Jun, c-Fos, p85, p110, Akt, mammalian target of rapamycin (mTOR), or interleukin-6 (IL-6) siRNA markedly inhibited PM-induced MMP-2 and MMP-9 expression. Moreover, surfactin could reduce Akt, mTOR, p65, and c-Jun activation and IL-6 secretion induced by PM. Finally, we proved that transfection with Akt, p65, or c-Jun siRNA significantly inhibited PM-induced IL-6 release. Taken together, these results suggest that surfactin functions as a suppressor of PM-induced MMP2/9-dependent oral cancer cell migration and invasion by inhibiting the activation of phosphoinositide 3-kinase (PI3K)/Akt/mTOR and PI3K/Akt/nuclear factor-κB (NF-κB) and activator protein-1 (AP-1)/IL-6 signaling pathways.

16.
Part Fibre Toxicol ; 17(1): 41, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32799885

RESUMEN

BACKGROUND: Particulate matters (PMs) in ambient air pollution are closely related to the incidence of respiratory diseases and decreased lung function. Our previous report demonstrated that PMs-induced oxidative stress increased the expression of proinflammatory intracellular adhesion molecule-1 (ICAM-1) through the IL-6/AKT/STAT3/NF-κB pathway in A549 cells. However, the role of O-PMs in epithelial-mesenchymal transition (EMT) development and pulmonary fibrosis and the related mechanisms have not been determined. The aim of this study was to investigate the effects of O-PMs on the pathogenesis of EMT and pulmonary fibrosis as well as the expression of ETS-1 and NF-κB p65, in vitro and in vivo. RESULTS: O-PMs treatment induced EMT development, fibronectin expression, and cell migration. O-PMs affected the expression of the EMT-related transcription factors NF-κB p65 and ETS-1. Interference with NF-κB p65 significantly decreased O-PMs-induced fibronectin expression. In addition, O-PMs affected the expression of fibronectin, E-cadherin, and vimentin through modulating ETS-1 expression. ATN-161, an antagonist of integrin α5ß1, decreased the expression of fibronectin and ETS-1 and EMT development. EMT development and the expression of fibronectin and ETS-1 were increased in the lung tissue of mice after exposure to PMs for 7 and 14 days. There was a significant correlation between fibronectin and ETS-1 expression in human pulmonary fibrosis tissue. CONCLUSION: O-PMs can induce EMT and fibronectin expression through the activation of transcription factors ETS-1 and NF-κB in A549 cells. PMs can induce EMT development and the expression of fibronectin and ETS-1 in mouse lung tissues. These findings suggest that the ETS-1 pathway could be a novel and alternative mechanism for EMT development and pulmonary fibrosis.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Pulmón/fisiopatología , Material Particulado/toxicidad , Células A549 , Células Epiteliales Alveolares , Animales , Transición Epitelial-Mesenquimal , Fibronectinas/metabolismo , Humanos , Ratones , FN-kappa B/metabolismo , Fibrosis Pulmonar , Factor de Transcripción ReIA
17.
J Cell Physiol ; 235(9): 6085-6102, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-31990056

RESUMEN

Apoptosis and fibrosis play a vital role in myocardial infarction (MI) induced tissue injury. Although microRNAs have been the focus of many studies on cardiac apoptosis and fibrosis in MI, the detailed effects of miR-26a is needed to further understood. The present study demonstrated that miR-26a was downregulated in ST-elevation MI (STEMI) patients and oxygen-glucose deprivation (OGD)-treated H9c2 cells. Downregulation of miR-26a was closely correlated with the increased expression of creatine kinase, creatine kinase-MB and troponin I in STEMI patients. Further analysis identified that ataxia-telangiectasia mutated (ATM) was a target gene for miR-26a based on a bioinformatics analysis. miR-26a overexpression effectively reduced ATM expression, apoptosis, and apoptosis-related proteins in OGD-treated H9c2 cells. In a mouse model of MI, the expression of miR-26a was significantly decreased in the infarct zone of the heart, whereas apoptosis and ATM expression were increased. miR-26a overexpression effectively reduced ATM expression and cardiac apoptosis at Day 1 after MI. Furthermore, we demonstrated that overexpression of miR-26a improved cardiac function and reduced cardiac fibrosis by the reduced expression of collagen type I and connective tissue growth factor (CTGF) in mice at Day 14 after MI. Overexpression of miR-26a or ATM knockdown decreased collagen I and CTGF expression in cultured OGD-treated cardiomyocytes. Taken together, these data demonstrate a prominent role for miR-26a in linking ATM expression to ischemia-induced apoptosis and fibrosis, key features of MI progression. miR-26a reduced MI development by affecting ATM expression and could be targeted in the treatment of MI.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Factor de Crecimiento del Tejido Conjuntivo/genética , MicroARNs/genética , Infarto del Miocardio/genética , Miocardio/metabolismo , Animales , Apoptosis/genética , Modelos Animales de Enfermedad , Fibrosis/genética , Fibrosis/patología , Glucosa/metabolismo , Humanos , Ratones , Infarto del Miocardio/patología , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Oxígeno/metabolismo , Ratas
18.
Anat Sci Educ ; 13(6): 743-758, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31883209

RESUMEN

Virtual microscopy (VM) has been utilized to improve students' learning experience in microscope laboratory sessions, but minimal attention has been given to determining how to use VM more effectively. The study examined the influence of VM on academic performance and teacher and student perceptions and compared laboratory test scores before and after VM incorporation. A total of 662 third-year students studying histology and 651 fourth-year students studying pathology were divided into two groups. The light microscopy (LM) group used a light microscope in 2014 and 2015, while the LM + VM group used the VM platform and a light microscope in 2016 and 2017. Four factors positively predict laboratory scores (R square, 0.323; P < 0.001): (i) the pathology course and test-enhanced learning, (ii) the VM platform and experience, (iii) medical students and lecture scores, and (iv) female students. The LM + VM group exhibited less score variability on laboratory examinations relative to their mean than the LM group. The LM + VM group was also associated with fewer failing grades (F grade; odds ratio, 0.336; P < 0.001) and higher scores (A grade; odds ratio, 2.084; P < 0.001) after controlling for sex, school, course, and lecture grades. The positive effect of the VM platform on laboratory test grades was associated with prior experience using the VM platform and was synergistic with more interim tests. Both teachers and students agreed that the VM platform enhanced laboratory learning. The incorporation of the VM platform in the context of test-enhanced learning may help more students to master microscopic laboratory content.


Asunto(s)
Instrucción por Computador/métodos , Educación Médica/métodos , Histología/educación , Patología/educación , Interfaz Usuario-Computador , Rendimiento Académico/estadística & datos numéricos , Educación Médica/estadística & datos numéricos , Femenino , Humanos , Internet , Laboratorios , Aprendizaje , Masculino , Microscopía/métodos , Proyectos Piloto , Estudiantes de Medicina/estadística & datos numéricos , Adulto Joven
19.
Mediators Inflamm ; 2019: 2343867, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31814799

RESUMEN

The most common postoperative complication after reconstructive surgery is flap necrosis. Adipose-derived stem cells (ADSCs) and their secretomes are reported to mediate skin repair. This study was designed to investigate whether conditioned media from ADSCs (ADSC-CM) protects ischemia/reperfusion- (I/R-) induced injury in skin flaps by promoting cell proliferation and increasing the number of hair follicles. The mouse flap model of ischemia was ligating the long thoracic vessels for 3 h, followed by blood reperfusion. ADSC-CM was administered to the flaps, and their survival was observed on postoperative day 5. ADSC-CM treatment led to a significant increase in cell proliferation and the number of hair follicles. IL-6 levels in the lysate and CM from ADSCs were significantly higher than those from Hs68 fibroblasts. Furthermore, a strong decrease in cell proliferation and the number of hair follicles was observed after treatment with IL-6-neutralizing antibodies or si-IL-6-ADSC. In addition, ADSC transplantation increased flap repair, cell proliferation, and hair follicle number in I/R injury of IL-6-knockout mice. In conclusion, IL-6 secreted from ADSCs promotes the survival of I/R-induced flaps by increasing cell proliferation and the number of hair follicles. ADSCs represent a promising therapy for preventing skin flap necrosis following reconstructive and plastic surgery.


Asunto(s)
Adipocitos/citología , Adipocitos/metabolismo , Folículo Piloso/citología , Folículo Piloso/efectos de los fármacos , Daño por Reperfusión/metabolismo , Piel/citología , Adipocitos/efectos de los fármacos , Tejido Adiposo/citología , Animales , Western Blotting , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Medios de Cultivo Condicionados/farmacología , Folículo Piloso/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Células Madre/citología , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Colgajos Quirúrgicos
20.
EBioMedicine ; 46: 236-247, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31401194

RESUMEN

BACKGROUND: Myocardial infarction (MI) is a life-threatening disease, often leading to heart failure. Defining therapeutic targets at an early time point is important to prevent heart failure. METHODS: MicroRNA screening was performed at early time points after MI using paired samples isolated from the infarcted and remote myocardium of pigs. We also examined the microRNA expression in plasma of MI patients and pigs. For mechanistic studies, AAV9-mediated microRNA knockdown and overexpression were administrated in mice undergoing MI. FINDINGS: MicroRNAs let-7a and let-7f were significantly downregulated in the infarct area within 24 h post-MI in pigs. We also observed a reduction of let-7a and let-7f in plasma of MI patients and pigs. Inhibition of let-7 exacerbated cardiomyocyte apoptosis, induced a cardiac hypertrophic phenotype, and resulted in worsened left ventricular ejection fraction. In contrast, ectopic let-7 overexpression significantly reduced those phenotypes and improved heart function. We then identified TGFBR3 as a target of let-7, and found that induction of Tgfbr3 in cardiomyocytes caused apoptosis, likely through p38 MAPK activation. Finally, we showed that the plasma TGFBR3 level was elevated after MI in plasma of MI patients and pigs. INTERPRETATION: Together, we conclude that the let-7-Tgfbr3-p38 MAPK signalling plays an important role in cardiomyocyte apoptosis after MI. Furthermore, microRNA let-7 and Tgfbr3 may serve as therapeutic targets and biomarkers for myocardial damage. FUND: Ministry of Science and Technology, National Health Research Institutes, Academia Sinica Program for Translational Innovation of Biopharmaceutical Development-Technology Supporting Platform Axis, Thematic Research Program and the Summit Research Program, Taiwan.


Asunto(s)
Apoptosis/genética , Regulación de la Expresión Génica , MicroARNs/genética , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Proteoglicanos/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal , Animales , Biomarcadores , Modelos Animales de Enfermedad , Ecocardiografía , Terapia Genética/métodos , Vectores Genéticos/genética , Humanos , Ratones , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/terapia , Miocitos Cardíacos/metabolismo , Porcinos , Factores de Tiempo , Transducción Genética , Remodelación Ventricular/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA