RESUMEN
PURPOSE: To examine whether isoflurane preconditioning (IsoP) has a protective effect against renal ischemia/reperfusion injury (I/RI) in diabetic conditions and to further clarify the underlying mechanisms. METHODS: Control and streptozotocin-induced diabetic rats were randomly assigned to five groups, as follows: normal sham, normal I/R, diabetic sham, diabetic I/R, and diabetic I/R + isoflurane. Renal I/RI was induced by clamping renal pedicle for 45 min followed by reperfusion for 24 h. IsoP was achieved by exposing the rats to 2% isoflurane for 30 min before vascular occlusion. Kidneys and blood were collected after reperfusion for further analysis. Renal histology, blood urea nitrogen, serum creatinine, oxidative stress, inflammatory cytokines, and renal cell apoptosis were assessed. Furthermore, the expression of brahma related gene 1 (Brg1), nuclear factor-erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and nuclear factor-κB (NF-κB) were determined. RESULTS: Compared with control, diabetic rats undergoing I/R presented more severe renal injury, oxidative stress, inflammatory reaction, and apoptosis with the impairment of Brg1/Nrf2/HO-1 signaling. All these alterations were significantly attenuated by pretreatment with isoflurane. CONCLUSIONS: These findings suggest that isoflurane could alleviate renal I/RI in diabetes, possibly through improving Brg1/Nrf2/HO-1 signaling.
Asunto(s)
Apoptosis , Diabetes Mellitus Experimental , Precondicionamiento Isquémico , Isoflurano , Daño por Reperfusión , Transducción de Señal , Factores de Transcripción , Animales , Masculino , Ratas , Anestésicos por Inhalación/farmacología , Apoptosis/efectos de los fármacos , Diabetes Mellitus Experimental/complicaciones , ADN Helicasas/metabolismo , Hemo-Oxigenasa 1/metabolismo , Precondicionamiento Isquémico/métodos , Isoflurano/farmacología , Riñón/efectos de los fármacos , Riñón/irrigación sanguínea , Riñón/patología , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Estrés Oxidativo/efectos de los fármacos , Distribución Aleatoria , Ratas Sprague-Dawley , Daño por Reperfusión/prevención & control , Transducción de Señal/efectos de los fármacosRESUMEN
Purpose: To examine whether isoflurane preconditioning (IsoP) has a protective effect against renal ischemia/reperfusion injury (I/RI) in diabetic conditions and to further clarify the underlying mechanisms. Methods: Control and streptozotocin-induced diabetic rats were randomly assigned to five groups, as follows: normal sham, normal I/R, diabetic sham, diabetic I/R, and diabetic I/R + isoflurane. Renal I/RI was induced by clamping renal pedicle for 45 min followed by reperfusion for 24 h. IsoP was achieved by exposing the rats to 2% isoflurane for 30 min before vascular occlusion. Kidneys and blood were collected after reperfusion for further analysis. Renal histology, blood urea nitrogen, serum creatinine, oxidative stress, inflammatory cytokines, and renal cell apoptosis were assessed. Furthermore, the expression of brahma related gene 1 (Brg1), nuclear factor-erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and nuclear factor-κB (NF-κB) were determined. Results: Compared with control, diabetic rats undergoing I/R presented more severe renal injury, oxidative stress, inflammatory reaction, and apoptosis with the impairment of Brg1/Nrf2/HO-1 signaling. All these alterations were significantly attenuated by pretreatment with isoflurane. Conclusions: These findings suggest that isoflurane could alleviate renal I/RI in diabetes, possibly through improving Brg1/Nrf2/HO-1 signaling.