Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 18103, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103478

RESUMEN

This paper presents a novel approach to the phase space reconstruction technique, fractional-order phase space reconstruction (FOSS), which generalizes the traditional integer-order derivative-based method. By leveraging fractional derivatives, FOSS offers a novel perspective for understanding complex time series, revealing unique properties not captured by conventional methods. We further develop the multi-span transition entropy component method (MTECM-FOSS), an advanced complexity measurement technique that builds upon FOSS. MTECM-FOSS decomposes complexity into intra-sample and inter-sample components, providing a more comprehensive understanding of the dynamics in multivariate data. In simulated data, we observe that lower fractional orders can effectively filter out random noise. Time series with diverse long- and short-term memory patterns exhibit distinct extremities at different fractional orders. In practical applications, MTECM-FOSS exhibits competitive or superior classification performance compared to state-of-the-art algorithms when using fewer features, indicating its potential for engineering tasks.

2.
J Neural Eng ; 20(6)2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38029436

RESUMEN

Objective.The absence of intuitive control in present myoelectric interfaces makes it a challenge for users to communicate with assistive devices efficiently in real-world conditions. This study aims to tackle this difficulty by incorporating neurophysiological entities, namely muscle and force synergies, onto multi-finger force estimation to allow intuitive myoelectric control.Approach. Eleven healthy subjects performed six isometric grasping tasks at three muscle contraction levels. The exerted fingertip forces were collected concurrently with the surface electromyographic (sEMG) signals from six extrinsic and intrinsic muscles of hand. Muscle synergies were then extracted from recorded sEMG signals, while force synergies were identified from measured force data. Afterwards, a linear regressor was trained to associate the two types of synergies. This would allow us to predict multi-finger forces simply by multiplying the activation signals derived from muscle synergies with the weighting matrix of initially identified force synergies. To mitigate the false activation of unintended fingers, the force predictions were finally corrected by a finger state recognition procedure.Main results. We found that five muscle synergies and four force synergies are able to make a tradeoff between the computation load and the prediction accuracy for the proposed model; When trained and tested on all six grasping tasks, our method (SYN-II) achieved better performance (R2= 0.80 ± 0.04, NRMSE = 0.19 ± 0.01) than conventional sEMG amplitude-based method; Interestingly, SYN-II performed better than all other methods when tested on two unknown tasks outside the four training tasks (R2= 0.74 ± 0.03, NRMSE = 0.22 ± 0.02), which indicated better generalization ability.Significance. This study shows the first attempt to link between muscle and force synergies to allow concurrent and continuous estimation of multi-finger forces from sEMG. The proposed approach may lay the foundation for high-performance myoelectric interfaces that allow users to control robotic hands in a more natural and intuitive manner.


Asunto(s)
Dedos , Extremidad Superior , Humanos , Proyectos Piloto , Dedos/fisiología , Mano/fisiología , Músculo Esquelético/fisiología , Fuerza de la Mano/fisiología
3.
R Soc Open Sci ; 10(6): 221067, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37388315

RESUMEN

To evaluate the synchronization of bivariate time series has been a hot topic, and a number of measures have been proposed. In this work, by introducing the ordinal pattern transition network into the crossplot, a new method for measuring the synchronization of bivariate time series is proposed. After the crossplot been partitioned and coded, the coded partitions are defined as network nodes and a directed weighted network is constructed based on the temporal adjacency of the nodes. The crossplot transition entropy of the network is proposed as an indicator of the synchronization between two time series. To test the characteristics and performance of the method, it is used to analyse the unidirectional coupled Lorentz model and compared it with existing methods. The results showed the new method had the advantages of easy parameter setting, efficiency, robustness, good consistency and suitability for short time series. Finally, electroencephalogram (EEG) data from auditory-evoked potential EEG-biometric dataset are investigated, and some useful and interesting results are obtained.

4.
Sensors (Basel) ; 22(16)2022 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-36016044

RESUMEN

As a novel form of visual analysis technique, the Poincaré plot has been used to identify correlation patterns in time series that cannot be detected using traditional analysis methods. In this work, based on the nonextensive of EEG, Poincaré plot nonextensive distribution entropy (NDE) is proposed to solve the problem of insufficient discrimination ability of Poincaré plot distribution entropy (DE) in analyzing fractional Brownian motion time series with different Hurst indices. More specifically, firstly, the reasons for the failure of Poincaré plot DE in the analysis of fractional Brownian motion are analyzed; secondly, in view of the nonextensive of EEG, a nonextensive parameter, the distance between sector ring subintervals from the original point, is introduced to highlight the different roles of each sector ring subinterval in the system. To demonstrate the usefulness of this method, the simulated time series of the fractional Brownian motion with different Hurst indices were analyzed using Poincaré plot NDE, and the process of determining the relevant parameters was further explained. Furthermore, the published sleep EEG dataset was analyzed, and the results showed that the Poincaré plot NDE can effectively reflect different sleep stages. The obtained results for the two classes of time series demonstrate that the Poincaré plot NDE provides a prospective tool for single-channel EEG time series analysis.


Asunto(s)
Electroencefalografía , Proyectos de Investigación , Entropía , Frecuencia Cardíaca , Factores de Tiempo
5.
Artículo en Inglés | MEDLINE | ID: mdl-35025745

RESUMEN

Steady-state visual evoked potential (SSVEP) is widely used in brain computer interface (BCI), medical detection, and neuroscience, so there is significant interest in enhancing SSVEP features via signal processing for better performance. In this study, an image processing method was combined with brain signal analysis and a sharpening filter was used to extract image details and features for the enhancement of SSVEP features. The results demonstrated that sharpening filter could eliminate the SSVEP signal trend term and suppress its low-frequency component. Meanwhile, sharpening filter effectively enhanced the signal-to-noise ratios (SNRs) of the single-channel and multi-channel fused signals. Image sharpening filter also significantly improved the recognition accuracy of canonical correlation analysis (CCA), filter bank canonical correlation analysis (FBCCA), and task-related component analysis (TRCA). The tools developed here effectively enhanced the SSVEP signal features, suggesting that image processing methods can be considered for improved brain signal analysis.


Asunto(s)
Interfaces Cerebro-Computador , Potenciales Evocados Visuales , Algoritmos , Electroencefalografía/métodos , Humanos , Estimulación Luminosa
6.
Front Neurosci ; 15: 757679, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35069096

RESUMEN

The refresh rate is one of the important parameters of visual presentation devices, and assessing the effect of the refresh rate of a device on motion perception has always been an important direction in the field of visual research. This study examined the effect of the refresh rate of a device on the motion perception response at different stimulation frequencies and provided an objective visual electrophysiological assessment method for the correct selection of display parameters in a visual perception experiment. In this study, a flicker-free steady-state motion visual stimulation with continuous scanning frequency and different forms (sinusoidal or triangular) was presented on a low-latency LCD monitor at different refresh rates. Seventeen participants were asked to observe the visual stimulation without head movement or eye movement, and the effect of the refresh rate was assessed by analyzing the changes in the intensity of their visual evoked potentials. The results demonstrated that an increased refresh rate significantly improved the intensity of motion visual evoked potentials at stimulation frequency ranges of 7-28 Hz, and there was a significant interaction between the refresh rate and motion frequency. Furthermore, the increased refresh rate also had the potential to enhance the ability to perceive similar motion. Therefore, we recommended using a refresh rate of at least 120 Hz in motion visual perception experiments to ensure a better stimulation effect. If the motion frequency or velocity is high, a refresh rate of≥240 Hz is also recommended.

7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 3067-3070, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31946535

RESUMEN

The combination of BCI technology and stereoscopic three-dimensional (3D) display has gradually become a trend, while stereo-based BCI has been used in rehabilitation training and medical testing. However, present stereo-based BCI research mainly stays in the static stereo environment, and the main method of visual stimulation is flickering, which does not effectively utilize the characteristic of the stereoscopic display technology. Therefore, we proposed a novel stimulation method based on stereoscopic motion. It utilized the stereo reciprocating motion of the plane of intensive line to elicit steady-state visual motion evoked potential (SSMVEP). The results shown that the correlation canonical analysis (CCA) coefficients of the EEG signal of stereoscopic motion (4.3 Hz-6.3 Hz) was significant higher than the non-stereoscopic motion, and more brain areas were activated. This stimulation method can induce significant visual response and has a great potential in the application of virtual reality stereo-based BCI system.


Asunto(s)
Interfaces Cerebro-Computador , Potenciales Evocados Visuales , Percepción de Movimiento , Electroencefalografía , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA