Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 238
Filtrar
1.
Food Chem ; 462: 141010, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39217745

RESUMEN

In this study, we investigated how different proportions blends of Rhamnogalacturonan-I pectic polysaccharides and hesperidin impact the gut microbiota and metabolites using an in vitro simulated digestion and fermentation model. The results indicated that both of them could modulate the gut microbiota and produce beneficial metabolites. However, their blends in particular proportions (such as 1:1) exhibited remarkable synergistic effects on modulating the intestinal microenvironment, surpassing the effects observed with individual components. Specifically, these blends could benefit the host by increasing short-chain fatty acids production (such as acetate), improving hesperidin bioavailability, producing more metabolites (such as hesperetin, phenolic acids), and promoting the growth of beneficial bacteria. This synergistic and additive effect was inseparable from the role of gut microbiota. Certain beneficial bacteria, such as Blautia, Faecalibacterium, and Prevotella, exhibited strong preferences for those blends, thereby contributing to host health through participating in carbohydrate and flavonoid metabolism.


Asunto(s)
Bacterias , Microbioma Gastrointestinal , Hesperidina , Pectinas , Hesperidina/farmacología , Hesperidina/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Bacterias/metabolismo , Bacterias/genética , Bacterias/efectos de los fármacos , Bacterias/clasificación , Bacterias/aislamiento & purificación , Humanos , Pectinas/metabolismo , Pectinas/química , Pectinas/farmacología , Fermentación , Polisacáridos/farmacología , Polisacáridos/metabolismo , Polisacáridos/química , Ácidos Grasos Volátiles/metabolismo , Digestión , Modelos Biológicos
2.
J Agric Food Chem ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39241186

RESUMEN

Pectic polysaccharides can beneficially shape the human microbiota. However, individual variability in the microbial response, especially the response between normal-weight (NW) and overweight (OW) people, is rarely understood. Therefore, we performed batch fermentation using inulin (INU), commercial pectin (CP), and pectic polysaccharides extracted from goji berry (GPP) and raspberry (RPP) by microbiota from five normal-weight (NW) and five overweight (OW) donors. The degree of specificity of fiber was negatively correlated to its fermentable rate and microbial response. Meanwhile, we found that microbiota from OW donors had a stronger fiber-degrading capacity than NW donors. The result of correlation between individual basal microbiota and the fermentable rate indicated Dialister, Megamonas, Oscillospiraceae_NK4A214, Prevotella, Ruminococcus, and unidentified_Muribaculaceae may be the key bacteria. In summary, we highlighted a new perspective regarding the interactive relationship between different fibers and fecal microbiota from different donors that may be helpful to design fiber interventions for individuals with different microbiota.

3.
Adv Food Nutr Res ; 112: 347-383, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39218506

RESUMEN

Vesicular delivery systems are highly ordered assemblies consisting of one or more concentric bilayers formed by the self-assembly of amphiphilic building blocks in the presence of water. In the field of functional food, vesicular delivery systems have been widely explored for effective formulations to deliver functional substances. With the effort of scientific research, certain categories of vesicular delivery systems have successfully been translated from the laboratory to the global market of functional food. This chapter aims to present comprehensively the various vesicular delivery systems, including their design, preparation methods, encapsulation of functional substances, and application in nutritional interventions.


Asunto(s)
Alimentos Funcionales , Humanos , Sistemas de Liberación de Medicamentos , Medicina de Precisión
4.
J Colloid Interface Sci ; 678(Pt B): 684-692, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39265339

RESUMEN

Color-tunable actuators with motion and color-changing functions have attracted considerable attention in recent years, yet it remains a challenge to achieve the autonomous regulation of motion and color. Inspired by Apatura ilia butterfly with dynamic structural color and Pelargonium carnosum plant with moisture responsive bilayer structure, an automatic color-tunable actuator is developed by integrating photonic crystals layer and hygroscopic layer. Taking advantage of the asymmetric hygroscopicity between two layers and the angle-dependent structural color of photonic crystals, this actuator can continuously self-flicker in humid environment by visual switching in structural color due to automated cyclic motion. The actuator is assembled into the self-flapping biomimetic butterfly with switchable color and the self-reporting information array with dynamic visual display, demonstrating its autoregulatory motion and color. This work provides a new strategy for developing automatic color-tunable actuator and suggests its potential in the intelligent robot and optical display.

5.
Micromachines (Basel) ; 15(8)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39203625

RESUMEN

Electromagnetic scattering is a routine tool for rapid, non-contact characterization of particle media. In previous work, the interaction targets of scattering intensity, scattering efficiency, and extinction efficiency of Bessel pincer light-sheet beams were all aimed at dielectric spheres. However, most particles in nature are charged. Considering the boundary condition on a charged sphere, the beam shape coefficients (BSCs) (pmn,qmn) of the charged spherical particle illuminated by a Bessel pincer light-sheet beam are obtained. The extinction, scattering, and absorption efficiencies are derived under the generalized Lorenz-Mie theory (GLMT) framework. This study reveals the significant differences in scattering characteristics of Bessel pincer light-sheet beams on a charged particle compared to traditional beams. The simulations show a few apparent differences in the far-field scattering intensity and efficiencies between charged and natural spheres under the influence of dimensionless size parameters. As dimensionless parameters increase, the difference between the charged and neutral spheres decreases. The effects of refractive index and beam parameters on scattering, extinction, and absorption coefficients are different but tend to converge with increasing dimensionless parameters. When applied to charged spheres with different refractive indices, the scattering, extinction, and absorption efficiencies of Bessel pincer light-sheet beams change with variations in surface charge. However, once the surface charge reaches saturation, these efficiencies become stable. This study is significant for understanding optical manipulation and super-resolution imaging in single-molecule microbiology.

6.
Carbohydr Polym ; 343: 122478, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39174101

RESUMEN

Lentinula edodes (Shiitake) is an important edible mushroom and polysaccharides are its major constituents with proven health benefits. The study was to investigate the gut bacterial fermentation and subsequent effects on gut barrier function of a glucan-rich polysaccharide, LePS40 precipitated from the mushroom water extract with 40 % (v/v) ethanol. LePS40 consisted of a ß-(1→3)-glucan main chain with substitution in the C-6 position with side chains mainly composed of (1 → 6)-linked ß-Glcp residues, (1 → 6)-linked α-Galp residues and terminal residues of ß-Glcp. LePS40 was found highly resistant to digestive enzymes and gastric acid in simulated human gastrointestinal tract, but highly fermentable during in vitro human fecal fermentation. The fecal fermentation degradation of LePS40 appeared to selectively break the glucoside linkage in view of the dramatic decrease in the glucose molar ratio (12.68 to 1.07). Compared with the prebiotic reference FOS, LePS40 led to much higher levels of butyric, and propionic acid and a lower level of acetic acid. Moreover, LePS40 enhanced the abundance of some beneficial bacterial populations, but decreased the bacteria possibly linked with fatty-liver disease and colorectal cancer. Furthermore, the fecal fermentation products of LePS40 showed a potential protective effect on intestinal barrier function against inflammatory damage in Caco-2/Raw264.7 co-culture model. These findings suggest the potential of LePS40 for improvement of gut health through modulation of gut microbiota.


Asunto(s)
Fermentación , Microbioma Gastrointestinal , Hongos Shiitake , Hongos Shiitake/química , Hongos Shiitake/metabolismo , Humanos , Microbioma Gastrointestinal/efectos de los fármacos , Células CACO-2 , Animales , Heces/microbiología , Polisacáridos/farmacología , Polisacáridos/química , Polisacáridos/metabolismo , Digestión/efectos de los fármacos , Peso Molecular , Ratones , Mucosa Intestinal/metabolismo , Prebióticos
7.
Int J Biol Macromol ; 277(Pt 2): 133591, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38960233

RESUMEN

Pectic polysaccharides are considered the highly complex natural plant polysaccharides which plays a vital role in plant tissue structure and human health. Detailed characterization of the monosaccharide composition can provide insights into the pectic polysaccharide structure. Nevertheless, when analyzing the monosaccharides of pectic polysaccharide, it is crucial to address the issue of incomplete hydrolysis that can occur due to the formation of acid-induced precipitates. Based on above, the main purpose of this article is to provide an optimized method for monosaccharide analysis of pectic polysaccharides through acid hydrolysis optimization using high-performance anion exchange chromatography (HPAEC) The results indicate that reducing the sample concentration to 0.5 mg/mL effectively reduces the acid gelling phenomenon and promotes the complete hydrolysis of pectin polysaccharides. The optimized parameters for acid hydrolysis involve 110 °C for 6 h in 2 M TFA. Furthermore, the consistency of this method is assessed, along with its ability to analyze pectin polysaccharides from various fruits. This hydrolysis approach holds promise for enabling accurate quantification of monosaccharide composition in pectic polysaccharides.


Asunto(s)
Monosacáridos , Pectinas , Pectinas/química , Pectinas/análisis , Monosacáridos/análisis , Monosacáridos/química , Hidrólisis , Cromatografía por Intercambio Iónico/métodos , Cromatografía Líquida de Alta Presión/métodos , Polisacáridos/química , Polisacáridos/análisis , Frutas/química
8.
Clin Transl Med ; 14(7): e1759, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38997803

RESUMEN

BACKGROUND: CircRNA-encoded proteins (CEPs) are emerging as new players in health and disease, and function as baits for the common partners of their cognate linear-spliced RNA encoded proteins (LEPs). However, their prevalence across human tissues and biological roles remain largely unexplored. The placenta is an ideal model for identifying CEPs due to its considerable protein diversity that is required to sustain fetal development during pregnancy. The aim of this study was to evaluate circRNA translation in the human placenta, and the potential roles of the CEPs in placental development and dysfunction. METHODS: Multiomics approaches, including RNA sequencing, ribosome profiling, and LC-MS/MS analysis, were utilised to identify novel translational events of circRNAs in human placentas. Bioinformatics methods and the protein bait hypothesis were employed to evaluate the roles of these newly discovered CEPs in placentation and associated disorders. The pathogenic role of a recently identified CEP circPRKCB119aa in preeclampsia was investigated through qRT-PCR, Western blotting, immunofluorescence imaging and phenotypic analyses. RESULTS: We found that 528 placental circRNAs bound to ribosomes with active translational elongation, and 139 were translated to proteins. The CEPs showed considerable structural homology with their cognate LEPs, but are more stable, hydrophobic and have a lower molecular-weight than the latter, all of which are conducive to their function as baits. On this basis, CEPs are deduced to be closely involved in placental function. Furthermore, we focused on a novel CEP circPRKCB119aa, and illuminated its pathogenic role in preeclampsia; it enhanced trophoblast autophagy by acting as a bait to inhibit phosphorylation of the cognate linear isoform PKCß. CONCLUSIONS: We discovered a hidden circRNA-encoded proteome in the human placenta, which offers new insights into the mechanisms underlying placental development, as well as placental disorders such as preeclampsia. Key points A hidden circRNA-encoded proteome in the human placenta was extensively identified and systematically characterised. The circRNA-encoded proteins (CEPs) are potentially related to placental development and associated disorders. A novel conserved CEP circPRKCB119aa enhanced trophoblast autophagy by inhibiting phosphorylation of its cognate linear-spliced isoform protein kinase C (PKC) ß in preeclampsia.


Asunto(s)
Placenta , Preeclampsia , Proteoma , ARN Circular , Humanos , Preeclampsia/genética , Preeclampsia/metabolismo , Embarazo , Femenino , ARN Circular/genética , ARN Circular/metabolismo , Placenta/metabolismo , Proteoma/metabolismo , Proteoma/genética
9.
Adv Mater ; : e2407856, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39032113

RESUMEN

Wetting behaviors can significantly affect the transport of energy and signal (E&S) through vapor, solid, and liquid interfaces, which has prompted increased interest in interfacial science and technology. E&S transmission can be achieved using electricity, light, and heat, which often accompany and interact with each other. Over the past decade, their distinctive transport phenomena during wetting processes have made significant contributions to various domains. However, few studies have analyzed the intricate relationship between wetting behavior and E&S transport. This review summarizes and discusses the mechanisms of electrical, light, and heat transmission at wetting interfaces to elucidate their respective scientific issues, technical characteristics, challenges, commonalities, and potential for technological convergence. The materials, structures, and devices involved in E&S transportation are also analyzed. Particularly, harnessing synergistic advantages in practical applications and constructing advanced, multifunctional, and highly efficient smart systems based on wetted interfaces is the aim to provide strategies.

10.
Macromol Rapid Commun ; 45(16): e2400170, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38936823

RESUMEN

A challenge remains in the development of anti-infectious coatings for the inert surfaces of biomedical devices that are prone to bacterial colonization and biofilm formation. Here, a facile photocuring method to construct functionalized polymeric coatings on inert polydimethylsiloxane (PDMS) surfaces, is developed. Using atom transfer radical polymerization (ATRP) initiator bearing thymol group, hydrophilic DMAEMA and benzophenone (BP)-containing monomers are copolymerized to form polymers with end functional groups. An end-functionalized biocidal coating is then constructed on the inert PDMS surface in one step using a photocuring reaction. The functionalized PDMS surfaces show excellent antibacterial and antifouling properties, are capable of completely eradiating MRSA within ≈6 h, and effectively inhibit the growth of biofilms. In addition, they have good stability and long-lasting antibacterial activity in body fluid environments such as 0.9% saline and urine. According to bladder model experiments, the catheter's lifespan can be extended from ≈7 to 35 days by inhibiting the growth and migration of bacteria along its inner surface. The photocuring technique is therefore very promising in terms of surface functionalization of inert biomedical devices in order to minimize the spread of infection.


Asunto(s)
Antibacterianos , Biopelículas , Dimetilpolisiloxanos , Propiedades de Superficie , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Dimetilpolisiloxanos/química , Biopelículas/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/fisiología , Polímeros/química , Polímeros/farmacología , Procesos Fotoquímicos , Benzofenonas/química , Benzofenonas/farmacología , Polimerizacion , Estructura Molecular
11.
Plants (Basel) ; 13(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38931142

RESUMEN

Computer-aided design usually gives inspirations and has become a vital strategy to develop novel pesticides through reconstructing natural lead compounds. Patulin, an unsaturated heterocyclic lactone mycotoxin, is a new natural PSII inhibitor and shows significant herbicidal activity to various weeds. However, some evidence, especially the health concern, prevents it from developing as a bioherbicide. In this work, molecular docking and toxicity risk prediction are combined to construct interaction models between the ligand and acceptor, and design and screen novel derivatives. Based on the analysis of a constructed patulin-Arabidopsis D1 protein docking model, in total, 81 derivatives are designed and ranked according to quantitative estimates of drug-likeness (QED) values and free energies. Among the newly designed derivatives, forty-five derivatives with better affinities than patulin are screened to further evaluate their toxicology. Finally, it is indicated that four patulin derivatives, D3, D6, D34, and D67, with higher binding affinity but lower toxicity than patulin have a great potential to develop as new herbicides with improved potency.

12.
J Agric Food Chem ; 72(27): 15128-15132, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38920291

RESUMEN

The 4th International Symposium on Food Science, Nutrition and Health (ISFSNH) was held at the Shangri-La Hotel in Dalian, China, on May 29-31, 2023. The symposium explored the connotations and needs of "The Great Food Perspective" under the theme "Focusing on new discoveries in food technology and creating a new future of nutrition and health" to better address the global emerging diverse food needs. The ISFSNH covered four areas: (1) food processing theory and technology, (2) food safety and quality control, (3) precision nutrition and health, and (4) creation of nutritious and healthy foods. More than 1000 scholars and entrepreneurs from more than 100 colleges and universities globally attended the conference. This special issue of the Journal of Agricultural and Food Chemistry highlights the important topics of the 4th ISFSNH and includes more than 20 papers.


Asunto(s)
Tecnología de Alimentos , China , Humanos , Inocuidad de los Alimentos
13.
ACS Appl Mater Interfaces ; 16(29): 38429-38441, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38943568

RESUMEN

Biofilm-associated infections remain a tremendous obstacle to the treatment of microbial infections globally. However, the poor penetrability to a dense extracellular polymeric substance matrix of traditional antibacterial agents limits their antibiofilm activity. Here, we show that nanoaggregates formed by self-assembly of amphiphilic borneol-guanidine-based cationic polymers (BGNx-n) possess strong antibacterial activity and can eliminate mature Staphylococcus aureus (S. aureus) biofilms. The introduction of the guanidine moiety improves the hydrophilicity and membrane penetrability of BGNx-n. The self-assembled nanoaggregates with highly localized positive charges are expected to enhance their interaction with negatively charged bacteria and biofilms. Furthermore, nanoaggregates dissociate on the surface of biofilms into smaller BGNx-n polymers, which enhances their ability to penetrate biofilms. BGNx-n nanoaggregates that exhibit superior antibacterial activity have the minimum inhibitory concentration (MIC) of 62.5 µg·mL-1 against S. aureus and eradicate mature biofilms at 4 × MIC with negligible hemolysis. Taken together, this size-variable self-assembly system offers a promising strategy for the development of effective antibiofilm agents.


Asunto(s)
Antibacterianos , Biopelículas , Canfanos , Guanidina , Pruebas de Sensibilidad Microbiana , Polímeros , Staphylococcus aureus , Biopelículas/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Guanidina/química , Guanidina/farmacología , Canfanos/química , Canfanos/farmacología , Polímeros/química , Polímeros/farmacología , Tensoactivos/química , Tensoactivos/farmacología , Humanos , Interacciones Hidrofóbicas e Hidrofílicas
14.
J Hypertens ; 42(9): 1606-1614, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38780189

RESUMEN

BACKGROUND: Unhealthy sleep patterns are common during pregnancy and have been associated with an increased risk of developing hypertensive disorders of pregnancy (HDPs) in observational studies. However, the causality underlying these associations remains uncertain. This study aimed to evaluate the potential causal association between seven sleep traits and the risk of HDPs using a two-sample Mendelian randomization study. METHODS: Genome-wide association study (GWAS) summary statistics were obtained from the FinnGen consortium, UK Biobank, and other prominent consortia, with a focus on individuals of European ancestry. The primary analysis utilized an inverse-variance-weighted MR approach supplemented by sensitivity analyses to mitigate potential biases introduced by pleiotropy. Furthermore, a two-step MR framework was employed for mediation analyses. RESULTS: The data analyzed included 200 000-500 000 individuals for each sleep trait, along with approximately 15 000 cases of HDPs. Genetically predicted excessive daytime sleepiness (EDS) exhibited a significant association with an increased risk of HDPs [odds ratio (OR) 2.96, 95% confidence interval (95% CI) 1.40-6.26], and the specific subtype of preeclampsia/eclampsia (OR 2.97, 95% CI 1.06-8.3). Similarly, genetically predicted obstructive sleep apnea (OSA) was associated with a higher risk of HDPs (OR 1.27, 95% CI 1.09-1.47). Sensitivity analysis validated the robustness of these associations. Mediation analysis showed that BMI mediated approximately 25% of the association between EDS and HDPs, while mediating up to approximately 60% of the association between OSA and the outcomes. No statistically significant associations were observed between other genetically predicted sleep traits, such as chronotype, daytime napping, sleep duration, insomnia, snoring, and the risk of HDPs. CONCLUSION: Our findings suggest a causal association between two sleep disorders, EDS and OSA, and the risk of HDPs, with BMI acting as a crucial mediator. EDS and OSA demonstrate promise as potentially preventable risk factors for HDPs, and targeting BMI may represent an alternative treatment strategy to mitigate the adverse impact of sleep disorders.


Asunto(s)
Estudio de Asociación del Genoma Completo , Hipertensión Inducida en el Embarazo , Análisis de la Aleatorización Mendeliana , Humanos , Femenino , Embarazo , Hipertensión Inducida en el Embarazo/genética , Hipertensión Inducida en el Embarazo/epidemiología , Factores de Riesgo , Sueño/genética
15.
J Agric Food Chem ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38606987

RESUMEN

A primary challenge of polysaccharide analysis is the need for comprehensive extraction and characterization methods. In this study, mulberry polysaccharides at different maturities were fully extracted through a two-step process involving ethylenediaminetetraacetic acid (EDTA) and sodium hydroxide (NaOH), and their structures were determined by a combination analysis of monosaccharides and glycosidic linkages based on liquid chromatography triple quadrupole mass spectrometry (LC/QqQ-MS). The results indicate mulberry polysaccharides mainly contain highly branched pectic polysaccharides, (1,3,6)-linked glucan, xylan, and xyloglucan, but the content of different portions varies at different maturity stages. HG decreases from 19.12 and 19.14% (green mulberry) to 9.80 and 6.08% (red mulberry) but increases to 17.83 and 11.83% as mulberry transitioned from red to black. In contrast, the contents of glucan showed opposite trends. When mulberry turns red to black, the RG-I arabinan chains decrease from 47.75 and 28.86% to 13.16 and 12.72%, while the galactan side chains increase from 1.18 and 1.91 to 8.3 and 6.49%, xylan and xyloglucan show an increase in content. Overall, the two-step extraction combined with LC/QqQ-MS provides a new strategy for extensive analysis of complex plant polysaccharides.

16.
Carbohydr Polym ; 335: 122079, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38616076

RESUMEN

The polysaccharides and triterpenes are important functional components of Ganoderma lucidum, but traditional preparation process of G. lucidum functional components can only realize the preparation of single functional component, which has poor targeting and low efficiency. In this study, the existence state of the functional components of G. lucidum was revealed. Then, the single step extraction process for functional components was established, and the precise structure evaluation of polysaccharide and triterpenes was conducted based on the process. The results showed that preparation time required for this strategy is only one-sixth of the traditional one, and 50 % of raw materials can be saved. Structural analysis of the functional components revealed that triterpenes were mainly Ganoderic acid and Lucidenic acid, and the polysaccharide structure was mainly 1,3-glucan and 1,3,6-glucan. The establishment of single step extraction strategy and the evaluation of the fine structure of functional components improved the efficiency of preparation and result determination, and provided an important basis for the development and utilization of green and low-carbon G. lucidum and even edible fungi resources and human nutritional dietary improvement strategies.


Asunto(s)
Reishi , Triterpenos , Humanos , Polisacáridos , Glucanos , China
17.
Food Chem ; 444: 138655, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38330612

RESUMEN

In this study, we addressed the limited water solubility of curcumin by utilizing epigallocatechin-3-gallate to form nanoparticles through self-assembly. The resulting particles, ranging from 100 to 150 nm, exhibited a redshift in the UV-visible spectrum, from 425 nm to 435 nm, indicative of potential π-π stacking. Molecular docking experiments supported this finding. Curcumin loaded with epigallocatechin-3-gallate showed exceptional dispersibility in aqueous solutions, with 90.92 % remaining after 60 days. The electrostatic screening effect arises from the charge carried by epigallocatechin-3-gallate on the nanoparticles, leading to enhanced retention of curcumin under different pH, temperature, and ionic strength conditions. Furthermore, epigallocatechin-3-gallate can interact with other hydrophobic polyphenols, improving their dispersibility and stability in aqueous systems. Applying this principle, a palatable beverage was formulated by combining turmeric extract and green tea. The nanoparticles encapsulated with epigallocatechin-3-gallate show potential for improving the applicability of curcumin in aqueous food systems.


Asunto(s)
Catequina , Catequina/análogos & derivados , Curcumina , Nanopartículas , Curcumina/química , Simulación del Acoplamiento Molecular , Bebidas , Catequina/química , Nanopartículas/química , Agua
18.
BMC Med Genomics ; 17(1): 4, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167320

RESUMEN

BACKGROUND: Hereditary hearing loss is a highly heterogeneous disorder. This study aimed to identify the genetic cause of a Chinese family with autosomal recessive non-syndromic sensorineural hearing loss (ARNSHL). METHODS: Clinical information and peripheral blood samples were collected from the proband and its parents. Two-step high-throughput next-generation sequencing on the Ion Torrent platform was applied to detect variants as follows. First, long-range PCR was performed to amplify all the regions of the GJB2, GJB3, SLC26A4, and MT-RNR1 genes, followed by next-generation sequencing. If no candidate pathogenetic variants were found, the targeted exon sequencing with AmpliSeq technology was employed to examine another 64 deafness-associated genes. Sanger sequencing was used to identify variants and the lineage co-segregation. The splicing of the MYO15A gene was assessed by in silico bioinformatics prediction and minigene assays. RESULTS: Two candidate MYO15A gene (OMIM, #602,666) heterozygous splicing variants, NG_011634.2 (NM_016239.3): c.6177 + 1G > T and c.9690 + 1G > A, were identified in the proband, and these two variants were both annotated as pathogenic according to the American College of Medical Genetics and Genomics (ACMG) guidelines. Further bioinformatic analysis predicted that the c.6177 + 1G > T variant might cause exon skipping and that the c.9690 + 1G > A variant might activate a cryptic splicing donor site in the downstream intronic region. An in vitro minigene assay confirmed the above predictions. CONCLUSIONS: We identified a compound heterozygous splicing variant in the MYO15A gene in a Han Chinese family with ARNSHL. Our results broaden the spectrum of MYO15A variants, potentially benefiting the early diagnosis, prevention, and treatment of the disease.


Asunto(s)
Sordera , Pérdida Auditiva Sensorineural , Humanos , Miosinas/genética , Sordera/genética , Pérdida Auditiva Sensorineural/genética , Genes Recesivos , Linaje , Mutación
19.
Plant Commun ; 5(3): 100775, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38050356

RESUMEN

The chloroplast is a critical battleground in the arms race between plants and pathogens. Among microbe-secreted mycotoxins, tenuazonic acid (TeA), produced by the genus Alternaria and other phytopathogenic fungi, inhibits photosynthesis, leading to a burst of photosynthetic singlet oxygen (1O2) that is implicated in damage and chloroplast-to-nucleus retrograde signaling. Despite the significant crop damage caused by Alternaria pathogens, our understanding of the molecular mechanism by which TeA promotes pathogenicity and cognate plant defense responses remains fragmentary. We now reveal that A. alternata induces necrotrophic foliar lesions by harnessing EXECUTER1 (EX1)/EX2-mediated chloroplast-to-nucleus retrograde signaling activated by TeA toxin-derived photosynthetic 1O2 in Arabidopsis thaliana. Mutation of the 1O2-sensitive EX1-W643 residue or complete deletion of the EX1 singlet oxygen sensor domain compromises expression of 1O2-responsive nuclear genes and foliar lesions. We also found that TeA toxin rapidly induces nuclear genes implicated in jasmonic acid (JA) synthesis and signaling, and EX1-mediated retrograde signaling appears to be critical for establishing a signaling cascade from 1O2 to JA. The present study sheds new light on the foliar pathogenicity of A. alternata, during which EX1-dependent 1O2 signaling induces JA-dependent foliar cell death.


Asunto(s)
Alternaria , Arabidopsis , Alternaria/metabolismo , Ácido Tenuazónico/metabolismo , Oxígeno Singlete/metabolismo , Virulencia , Cloroplastos/metabolismo , Arabidopsis/genética , Plantas/metabolismo , Transducción de Señal
20.
Pest Manag Sci ; 80(1): 133-148, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37103431

RESUMEN

BACKGROUND: Bioherbicides are becoming more attractive as safe weed control tools towards sustainable agriculture. Natural products constitute an important source chemicals and chemical leads for discovery and development of novel pesticide target sites. Citrinin is a bioactive compound produced by fungi of the genera Penicillium and Aspergillus. However, its physiological-biochemical mechanism as a phytotoxin remains unclear. RESULTS: Citrinin causes visible leaf lesions on Ageratina adenophora similar to those produced by the commercial herbicide bromoxynil. Phytotoxicity bioassay tests using 24 plant species confirmed that citrinin has a broad activity spectrum and therefore has potential as a bioherbicide. Based on chlorophyll fluorescence studies, citrinin mainly blocks PSII electron flow beyond plastoquinone QA at the acceptor side, resulting in the inactivation of PSII reaction centers. Furthermore, molecular modeling of citrinin docking to the A. adenophora D1 protein suggests that it binds to the plastoquinone QB site by a hydrogen bond between the O1 hydroxy oxygen atom of citrinin and the histidine 215 of the D1 protein, the same way as classical phenolic PSII herbicides do. Finally, 32 new citrinin derivatives were designed and sorted according to free energies on the basis of the molecular model of an interaction between the citrinin molecule and the D1 protein. Five of the modeled compounds had much higher ligand binding affinity within the D1 protein compared with lead compound citrinin. CONCLUSION: Citrinin is a novel natural PSII inhibitor that has the potential to be developed into a bioherbicide or utilized as a lead compound for discovery of new derivatives with high herbicidal potency. © 2023 Society of Chemical Industry.


Asunto(s)
Citrinina , Herbicidas , Complejo de Proteína del Fotosistema II/metabolismo , Plastoquinona/química , Plastoquinona/metabolismo , Herbicidas/farmacología , Herbicidas/metabolismo , Control de Malezas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA