Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Diabetes Res ; 2024: 5661751, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38988702

RESUMEN

Purpose: Type 2 diabetes mellitus (T2DM) is associated with multiple neuropsychiatric impairments, including cognitive dysfunction, and melatonin (MLT) plays a crucial role in maintaining normal neuropsychiatric functions. This study is aimed at investigating the change in plasma MLT levels and its association with neuropsychiatric impairments in T2DM patients. Methods: One hundred twenty-six T2DM patients were recruited, and their demographics and clinical data were collected. Apart from the plasma glycated hemoglobin (HbA1c) levels and other routine metabolic indicators, the plasma concentrations of MLT, C-reactive protein (CRP), Interleukin 6 (IL-6), soluble myeloid triggered receptor 1 (sTREM 1), and receptor 2 (sTREM 2) were measured. Moreover, the executive function and depressive tendency were evaluated via the Behavior Rating Inventory of Executive Function-Adult Version (BRIEF-A) and the Epidemiological Research Center Depression Scale (CES-D), respectively. Result: Compared with the low HbA1c group, the T2DM patients in the high HbA1c group presented lower plasma MLT levels but higher plasma concentrations of inflammatory biomarker levels, together with higher scores in the BRIEF-A and CES-D scales. Moreover, results of the Pearson correlation test showed that the plasma MLT levels were negatively correlated with the BRIEF-A and CES-D scores, as well as plasma concentrations of HbA1c and inflammatory indications, indicating that MLT may mediate their neuroinflammation and neuropsychiatric impairments. Furthermore, the ROC curve results indicated that plasma MLT levels have a predictive effect on executive impairment and depressive status in T2DM patients. Conclusion: MLT levels decreased in patients with T2DM and were associated with neuropsychiatric impairments and inflammatory status, and MLT might be developed as a therapeutic agent and predictive indicator for T2DM-associated executive impairment and depression status.


Asunto(s)
Biomarcadores , Disfunción Cognitiva , Depresión , Diabetes Mellitus Tipo 2 , Hemoglobina Glucada , Melatonina , Humanos , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/psicología , Diabetes Mellitus Tipo 2/complicaciones , Melatonina/sangre , Masculino , Femenino , Persona de Mediana Edad , Hemoglobina Glucada/metabolismo , Hemoglobina Glucada/análisis , Disfunción Cognitiva/sangre , Disfunción Cognitiva/psicología , Depresión/sangre , Biomarcadores/sangre , Anciano , Adulto , Función Ejecutiva , Proteína C-Reactiva/metabolismo , Proteína C-Reactiva/análisis
2.
Brain Res ; 1838: 148991, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38754803

RESUMEN

BACKGROUND: The study aimed to investigate the potential pharmacological and toxicological differences between Vigabatrin (VGB) and its enantiomers S-VGB and R-VGB. The researchers focused on the toxic effects and antiepileptic activity of these compounds in a rat model. METHODS: The epileptic rat model was established by intraperitoneal injection of kainic acid, and the antiepileptic activity of VGB, S-VGB, and VGB was observed, focusing on the improvements in seizure latency, seizure frequency and sensory, motor, learning and memory deficits in epileptic rats, as well as the hippocampal expression of key molecular associated with synaptic plasticity and the Wnt/ß-catenin/GSK 3ß signaling pathway. The acute toxic test was carried out and the LD50 was calculated, and tretinal damages in epileptic rats were also evaluated. RESULT: The results showed that S-VGB exhibited stronger antiepileptic and neuroprotective effects with lower toxicity compared to VGB raceme. These findings suggest that S-VGB and VGB may modulate neuronal damage, glial cell activation, and synaptic plasticity related to epilepsy through the Wnt/ß-catenin/GSK 3ß signaling pathway. The study provides valuable insights into the potential differential effects of VGB enantiomers, highlighting the potential of S-VGB as an antiepileptic drug with reduced side effects. CONCLUSION: S-VGB has the highest antiepileptic effect and lowest toxicity compared to VGB and R-VGB.


Asunto(s)
Anticonvulsivantes , Epilepsia , Vigabatrin , Vía de Señalización Wnt , Animales , Anticonvulsivantes/farmacología , Vigabatrin/farmacología , Ratas , Masculino , Epilepsia/tratamiento farmacológico , Epilepsia/inducido químicamente , Estereoisomerismo , Vía de Señalización Wnt/efectos de los fármacos , Ácido Kaínico/toxicidad , Ratas Sprague-Dawley , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Plasticidad Neuronal/efectos de los fármacos , Modelos Animales de Enfermedad , Fármacos Neuroprotectores/farmacología , Glucógeno Sintasa Quinasa 3 beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA