Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 6(9): 6164-9, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-24735241

RESUMEN

An ITO substrate with periodic surface nanostructures was used to induce strong diffusion and diffraction of incident light. The nanostructures were fabricated using nanoimprint lithography on photoresist followed by coating of the ITO layer and organic materials with uniform morphology. The nanostructures embedded into the ITO layer were found to increase absorption in poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester solar devices. The short-circuit current of the nanostructured organic solar cells improved from 7.07 to 10.76 mA/cm2. This improvement was due to the increased effective optical path of absorbed light resulting from the trapping and scattering by the nanostructures.

2.
ACS Appl Mater Interfaces ; 5(15): 7552-8, 2013 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-23845069

RESUMEN

We demonstrate the implementation of a hybrid solar cell that comprises a surface nanostructured n-type Si and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate). The Si surface before deposition of the organic layer was nanostructured by using CsCl self-assembled nanoparticles as a hard mask and dry etching to form radial junction architectures and enhance light diffusion and absorption. Apart from the textured Si surface, processing parameters such as from metal-electrode shadow ratio, spin-coating rate, and surfactant addition were properly adjusted to improve overall cell performance. Our hybrid solar cells achieve the best performance under optimized cell parameters with a power conversion efficiency of 8.84% and short-circuit current density of 30.5 mA/cm(2). This combined technique provides a simple, scalable, and cost-effective process for fabricating hybrid solar cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA