Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38746251

RESUMEN

Humans effortlessly use vision to plan and guide navigation through the local environment, or "scene". A network of three cortical regions responds selectively to visual scene information, including the occipital (OPA), parahippocampal (PPA), and medial place areas (MPA) - but how this network supports visually-guided navigation is unclear. Recent evidence suggests that one region in particular, the OPA, supports visual representations for navigation, while PPA and MPA support other aspects of scene processing. However, most previous studies tested only static scene images, which lack the dynamic experience of navigating through scenes. We used dynamic movie stimuli to test whether OPA, PPA, and MPA represent two critical kinds of navigationally-relevant information: navigational affordances (e.g., can I walk to the left, right, or both?) and ego-motion (e.g., am I walking forward or backward? turning left or right?). We found that OPA is sensitive to both affordances and ego-motion, as well as the conflict between these cues - e.g., turning toward versus away from an open doorway. These effects were significantly weaker or absent in PPA and MPA. Responses in OPA were also dissociable from those in early visual cortex, consistent with the idea that OPA responses are not merely explained by lower-level visual features. OPA responses to affordances and ego-motion were stronger in the contralateral than ipsilateral visual field, suggesting that OPA encodes navigationally relevant information within an egocentric reference frame. Taken together, these results support the hypothesis that OPA contains visual representations that are useful for planning and guiding navigation through scenes.

2.
Neurobiol Lang (Camb) ; 4(4): 575-610, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38144236

RESUMEN

Much of the language we encounter in our everyday lives comes in the form of conversation, yet the majority of research on the neural basis of language comprehension has used input from only one speaker at a time. Twenty adults were scanned while passively observing audiovisual conversations using functional magnetic resonance imaging. In a block-design task, participants watched 20 s videos of puppets speaking either to another puppet (the dialogue condition) or directly to the viewer (the monologue condition), while the audio was either comprehensible (played forward) or incomprehensible (played backward). Individually functionally localized left-hemisphere language regions responded more to comprehensible than incomprehensible speech but did not respond differently to dialogue than monologue. In a second task, participants watched videos (1-3 min each) of two puppets conversing with each other, in which one puppet was comprehensible while the other's speech was reversed. All participants saw the same visual input but were randomly assigned which character's speech was comprehensible. In left-hemisphere cortical language regions, the time course of activity was correlated only among participants who heard the same character speaking comprehensibly, despite identical visual input across all participants. For comparison, some individually localized theory of mind regions and right-hemisphere homologues of language regions responded more to dialogue than monologue in the first task, and in the second task, activity in some regions was correlated across all participants regardless of which character was speaking comprehensibly. Together, these results suggest that canonical left-hemisphere cortical language regions are not sensitive to differences between observed dialogue and monologue.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA