Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Eur J Pharmacol ; 980: 176867, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39111683

RESUMEN

BACKGROUND: MARCKS (myristoylated alanine-rich C kinase substrates) serves as a substrate for protein kinase C, residing in the plasma membrane while acts as an actin filament crosslinking protein. This investigation aims to elucidate phosphorylated MARCKS (p-MARCKS) levels and activity in allergic asthma patients and explore the therapeutic potential of peptide inhibitors targeting p-MARCKS in an acute mouse model of allergic asthma. METHODS: Immunohistochemistry and histology staining were employed on lung tissue slides to evaluate p-MARCKS expression and allergic asthma symptoms. Airway resistance was measured using invasive whole-body plethysmography. Flow cytometry detected lung dendritic cell migration, and migration/maturation assays were conducted on isolated murine bone marrow-derived dendritic cells (BM-DCs). RESULTS: Elevated p-MARCKS expression was observed in both human asthmatic tissues and animal models immunized with ovalbumin or Alternaria alternata. Remarkably, asthmatic individuals showed elevated high p-MARCKS expression in lung tissues. Intraperitoneal injection of the peptide MPS, targeting the MARCKS phosphorylation site domain, before allergen challenged, effectively suppressed MARCKS phosphorylation in murine lung tissues. MPS inhibited both in vivo and in vitro migration and maturation of dendritic cells (BM-DCs) and reduced Th2-related lymphocyte activation in bronchoalveolar lavage fluid (BALF). MPS pretreatment additionally suppressed all symptoms associated with allergic airway asthma, including a reduction in inflammatory cell influx, airway mucous cell metaplasia, and airway hyperreactivity. CONCLUSION: These findings suggest that phosphorylated MARCKS occurs in asthmatic lung tissue, and the inhibition of MARCKS phosphorylation by the MPS peptide reduces dendritic cell migration and Th2-related lymphocytes in the lungs in a murine model of acute asthma.


Asunto(s)
Asma , Movimiento Celular , Células Dendríticas , Sustrato de la Proteína Quinasa C Rico en Alanina Miristoilada , Animales , Femenino , Humanos , Masculino , Ratones , Enfermedad Aguda , Asma/inmunología , Asma/tratamiento farmacológico , Asma/patología , Asma/metabolismo , Movimiento Celular/efectos de los fármacos , Células Dendríticas/inmunología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Modelos Animales de Enfermedad , Pulmón/patología , Pulmón/inmunología , Pulmón/efectos de los fármacos , Ratones Endogámicos BALB C , Sustrato de la Proteína Quinasa C Rico en Alanina Miristoilada/metabolismo , Péptidos/farmacología , Fosforilación
2.
Front Immunol ; 15: 1372956, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38953033

RESUMEN

Our study aimed to elucidate the role of Galectin-1 (Gal-1) role in the immunosuppressive tumor microenvironment (TME) of prostate cancer (PCa). Our previous findings demonstrated a correlation between elevated Gal-1 expression and advanced PCa stages. In this study, we also observed that Gal-1 is expressed around the tumor stroma and its expression level is associated with PCa progression. We identified that Gal-1 could be secreted by PCa cells, and secreted Gal-1 has the potential to induce T cell apoptosis. Gal-1 knockdown or inhibition of Gal-1 function by LLS30 suppresses T cell apoptosis resulting in increased intratumoral T cell infiltration. Importantly, LLS30 treatment significantly improved the antitumor efficacy of anti-PD-1 in vivo. Mechanistically, LLS30 binds to the carbohydrate recognition domain (CRD) of Gal-1, disrupting its binding to CD45 leading to the suppression of T cell apoptosis. In addition, RNA-seq analysis revealed a novel mechanism of action for LLS30, linking its tumor-intrinsic oncogenic effects to anti-tumor immunity. These findings suggested that tumor-derived Gal-1 contributes to the immunosuppressive TME in PCa by inducing apoptosis in effector T cells. Targeting Gal-1 with LLS30 may offer a strategy to enhance anti-tumor immunity and improve immunotherapy.


Asunto(s)
Apoptosis , Galectina 1 , Inmunoterapia , Neoplasias de la Próstata , Linfocitos T , Microambiente Tumoral , Masculino , Galectina 1/genética , Galectina 1/metabolismo , Neoplasias de la Próstata/inmunología , Neoplasias de la Próstata/terapia , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Humanos , Animales , Microambiente Tumoral/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Ratones , Inmunoterapia/métodos , Línea Celular Tumoral , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo
3.
Adv Sci (Weinh) ; 11(29): e2308505, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38838052

RESUMEN

With the increasing incidence of kidney diseases, there is an urgent need to develop therapeutic strategies to combat post-injury fibrosis. Immune cells, including platelets, play a pivotal role in this repair process, primarily through their released cytokines. However, the specific role of platelets in kidney injury and subsequent repair remains underexplored. Here, the detrimental role of platelets in renal recovery following ischemia/reperfusion injury and its contribution to acute kidney injury  to chronic kidney disease transition is aimed to investigated. In this study, it is shown that depleting platelets accelerates injury resolution and significantly reduces fibrosis. Employing advanced single-cell and spatial transcriptomic techniques, macrophages as the primary mediators modulated by platelet signals is identified. A novel subset of macrophages, termed "cycling M2", which exhibit an M2 phenotype combined with enhanced proliferative activity is uncovered. This subset emerges in the injured kidney during the resolution phase and is modulated by platelet-derived thrombospondin 1 (THBS1) signaling, acquiring profibrotic characteristics. Conversely, targeted inhibition of THBS1 markedly downregulates the cycling M2 macrophage, thereby mitigating fibrotic progression. Overall, this findings highlight the adverse role of platelet THBS1-boosted cycling M2 macrophages in renal injury repair and suggest platelet THBS1 as a promising therapeutic target for alleviating inflammation and kidney fibrosis.


Asunto(s)
Plaquetas , Fibrosis , Macrófagos , Transcriptoma , Macrófagos/metabolismo , Animales , Fibrosis/metabolismo , Ratones , Plaquetas/metabolismo , Transcriptoma/genética , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos C57BL , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/genética , Lesión Renal Aguda/patología , Análisis de la Célula Individual/métodos , Daño por Reperfusión/metabolismo , Daño por Reperfusión/genética , Riñón/metabolismo , Riñón/patología
4.
Am J Respir Crit Care Med ; 210(4): 455-464, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38913573

RESUMEN

Rationale: Idiopathic pulmonary fibrosis (IPF) causes irreversible fibrosis of the lung parenchyma. Although antifibrotic therapy can slow IPF progression, treatment response is variable. There exists a critical need to develop a precision medicine approach to IPF. Objectives: To identify and validate biologically driven molecular endotypes of IPF. Methods: Latent class analysis (LCA) was independently performed in prospectively recruited discovery (n = 875) and validation (n = 347) cohorts. Twenty-five plasma biomarkers associated with fibrogenesis served as class-defining variables. The association between molecular endotype and 4-year transplant-free survival was tested using multivariable Cox regression adjusted for baseline confounders. Endotype-dependent differential treatment response to future antifibrotic exposure was then assessed in a pooled cohort of patients naive to antifibrotic therapy at the time of biomarker measurement (n = 555). Measurements and Main Results: LCA independently identified two latent classes in both cohorts (P < 0.0001). WFDC2 (WAP four-disulfide core domain protein 2) was the most important determinant of class membership across cohorts. Membership in class 2 was characterized by higher biomarker concentrations and a higher risk of death or transplant (discovery, hazard ratio [HR], 2.02; 95% confidence interval [CI], 1.64-2.48; P < 0.001; validation, HR, 1.95; 95% CI, 1.34-2.82; P < 0.001). In pooled analysis, significant heterogeneity in treatment effect was observed between endotypes (P = 0.030 for interaction), with a favorable antifibrotic response in class 2 (HR, 0.64; 95% CI, 0.45-0.93; P = 0.018) but not in class 1 (HR, 1.19; 95% CI, 0.77-1.84; P = 0.422). Conclusions: In this multicohort study, we identified two novel molecular endotypes of IPF with divergent clinical outcomes and responses to antifibrotic therapy. Pending further validation, these endotypes could enable a precision medicine approach for future IPF clinical trials.


Asunto(s)
Biomarcadores , Fibrosis Pulmonar Idiopática , Análisis de Clases Latentes , Humanos , Fibrosis Pulmonar Idiopática/sangre , Fibrosis Pulmonar Idiopática/mortalidad , Masculino , Femenino , Persona de Mediana Edad , Biomarcadores/sangre , Anciano , Estudios de Cohortes , Estudios Prospectivos
5.
Am J Respir Crit Care Med ; 210(5): 639-647, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38843133

RESUMEN

Rationale: Accelerated biological aging has been implicated in the development of interstitial lung disease (ILD) and other diseases of aging but remains poorly understood. Objectives: To identify plasma proteins that mediate the relationship between chronological age and survival association in patients with ILD. Methods: Causal mediation analysis was performed to identify plasma proteins that mediated the chronological age-survival relationship in an idiopathic pulmonary fibrosis discovery cohort. Proteins mediating this relationship after adjustment for false discovery were advanced for testing in an independent ILD validation cohort and explored in a chronic obstructive pulmonary disease cohort. A proteomic-based measure of biological age was constructed and survival analysis performed, assessing the impact of biological age and peripheral blood telomere length on the chronological age-survival relationship. Measurements and Main Results: Twenty-two proteins mediated the chronological age-survival relationship after adjustment for false discovery in the idiopathic pulmonary fibrosis discovery cohort (n = 874), with 19 remaining significant mediators of this relationship in the ILD validation cohort (n = 983) and one mediating this relationship in the chronic obstructive pulmonary disease cohort. Latent transforming growth factor-ß binding protein 2 and ectodysplasin A2 receptor showed the strongest mediation across cohorts. A proteomic measure of biological age completely attenuated the chronological age-survival association and better discriminated survival than chronological age. Results were robust to adjustment for peripheral blood telomere length, which did not mediate the chronological age-survival relationship. Conclusions: Molecular measures of aging completely mediate the relationship between chronological age and survival, suggesting that chronological age has no direct effect on ILD survival.


Asunto(s)
Envejecimiento , Fibrosis Pulmonar Idiopática , Humanos , Masculino , Femenino , Anciano , Envejecimiento/fisiología , Persona de Mediana Edad , Fibrosis Pulmonar Idiopática/mortalidad , Fibrosis Pulmonar Idiopática/fisiopatología , Fibrosis Pulmonar Idiopática/sangre , Análisis de Mediación , Estudios de Cohortes , Análisis de Supervivencia , Proteómica , Anciano de 80 o más Años , Proteínas Sanguíneas/metabolismo
6.
J Heart Lung Transplant ; 43(7): 1174-1182, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38556070

RESUMEN

BACKGROUND: Lung transplantation remains the sole curative option for patients with idiopathic pulmonary fibrosis (IPF), but donor organs remain scarce, and many eligible patients die before transplant. Tools to optimize the timing of transplant referrals are urgently needed. METHODS: Least absolute shrinkage and selection operator was applied to clinical and proteomic data generated as part of a prospective cohort study of interstitial lung disease (ILD) to derive clinical, proteomic, and multidimensional logit models of near-term death or lung transplant within 18 months of blood draw. Model-fitted values were dichotomized at the point of maximal sensitivity and specificity, and decision curve analysis was used to select the best-performing classifier. We then applied this classifier to independent IPF and non-IPF ILD cohorts to determine test performance characteristics. Cohorts were restricted to patients aged ≤72 years with body mass index 18 to 32 to increase the likelihood of transplant eligibility. RESULTS: IPF derivation, IPF validation, and non-IPF ILD validation cohorts consisted of 314, 105, and 295 patients, respectively. A multidimensional model comprising 2 clinical variables and 20 proteins outperformed stand-alone clinical and proteomic models. Following dichotomization, the multidimensional classifier predicted near-term outcome with 70% sensitivity and 92% specificity in the IPF validation cohort and 70% sensitivity and 80% specificity in the non-IPF ILD validation cohort. CONCLUSIONS: A multidimensional classifier of near-term outcomes accurately discriminated this end-point with good test performance across independent IPF and non-IPF ILD cohorts. These findings support refinement and prospective validation of this classifier in transplant-eligible individuals.


Asunto(s)
Fibrosis Pulmonar Idiopática , Trasplante de Pulmón , Derivación y Consulta , Humanos , Masculino , Femenino , Persona de Mediana Edad , Estudios Prospectivos , Fibrosis Pulmonar Idiopática/cirugía , Fibrosis Pulmonar Idiopática/clasificación , Fibrosis Pulmonar Idiopática/diagnóstico , Fibrosis Pulmonar Idiopática/sangre , Anciano , Proteómica
7.
Ren Fail ; 46(1): 2298080, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38186360

RESUMEN

BACKGROUND: Low protein intake (LPI) has been suggested as a treatment for chronic kidney disease (CKD). However, protein intake is essential for bone health. METHODS: We studied the database of the National Health and Nutrition Examination Survey, 2005-2010. Basic variables, metabolic diseases, and bone density of different femoral areas were stratified into four subgroups according to different protein intake (DPI) (that is, <0.8, 0.8-1.0, 1.0-1.2, and >1.2 g/kg/day). RESULTS: Significant differences were found among all lumbar area bone mineral density (BMD) and T-scores (p < 0.0001). There was an apparent trend between a decreasing BMD in the CKD groups with increasing DPI in all single lumbar spines (L1, L2, L3, and L4) and all L spines (L1-L4). Compared with DPI (0.8-1.0 g/day/kg), higher risks of osteoporosis were noticed in the subgroup of >1.2 g/day/kg over L2 (relative risk (RR)=1.326, 95% confidence interval (CI)=1.062-1.656), subgroup >1.2 g/day/kg over L3 (RR = 1.31, 95%CI = 1.057-1.622), subgroup <0.8 g/day/kg over L4 (RR = 1.276, 95%CI = 1.015-1.605), subgroup <0.8 g/day/kg over all L spines (RR = 11.275, 95%CI = 1.051-1.548), and subgroup >1.2 g/day/kg over all L spines (RR = 0.333, 95%CI = 1.098-1.618). However, a higher risk of osteoporosis was observed only in the non-CKD group. There was an apparent trend of higher DPI coexisting with lower BMD and T scores in patients with CKD. For osteoporosis (reference:0.8-1.0 g/day/kg), lower (<0.8 g/day/kg) or higher DPI (>1.2 g/day/kg) was associated with higher risks in the non-CKD group, but not in the CKD group. CONCLUSIONS: In the CKD group, LPI for renal protection was safe without threatening L spine bone density and without causing a higher risk of osteoporosis.


A low-protein diet should be encouraged in patients with CKD, but protein is essential for bone health. In this study, we showed that a low-protein diet did not affect lumbar bone density. Therefore, in the care of CKD, a low-protein diet is beneficial for renal function and without harm to lumbar bone health.


Asunto(s)
Osteoporosis , Insuficiencia Renal Crónica , Humanos , Densidad Ósea , Encuestas Nutricionales , Osteoporosis/epidemiología , Osteoporosis/etiología , Riñón , Proteínas en la Dieta
8.
Nat Commun ; 14(1): 8393, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110369

RESUMEN

Ferroptosis is an iron-dependent programmed cell death associated with severe kidney diseases, linked to decreased glutathione peroxidase 4 (GPX4). However, the spatial distribution of renal GPX4-mediated ferroptosis and the molecular events causing GPX4 reduction during ischemia-reperfusion (I/R) remain largely unknown. Using spatial transcriptomics, we identify that GPX4 is situated at the interface of the inner cortex and outer medulla, a hyperactive ferroptosis site post-I/R injury. We further discover OTU deubiquitinase 5 (OTUD5) as a GPX4-binding protein that confers ferroptosis resistance by stabilizing GPX4. During I/R, ferroptosis is induced by mTORC1-mediated autophagy, causing OTUD5 degradation and subsequent GPX4 decay. Functionally, OTUD5 deletion intensifies renal tubular cell ferroptosis and exacerbates acute kidney injury, while AAV-mediated OTUD5 delivery mitigates ferroptosis and promotes renal function recovery from I/R injury. Overall, this study highlights a new autophagy-dependent ferroptosis module: hypoxia/ischemia-induced OTUD5 autophagy triggers GPX4 degradation, offering a potential therapeutic avenue for I/R-related kidney diseases.


Asunto(s)
Lesión Renal Aguda , Ferroptosis , Daño por Reperfusión , Humanos , Riñón , Autofagia , Isquemia
9.
Artículo en Inglés | MEDLINE | ID: mdl-37847691

RESUMEN

RATIONALE: Idiopathic pulmonary fibrosis (IPF) causes progressive lung scarring and high mortality. Reliable and accurate prognostic biomarkers are urgently needed. OBJECTIVE: To identify and validate circulating protein biomarkers of IPF survival. METHODS: High-throughput proteomic data were generated using prospectively collected plasma samples from patients with IPF from the Pulmonary Fibrosis Foundation Patient Registry (discovery cohort) and the Universities of California-Davis, Chicago, and Virginia (validation cohort). Proteins associated with three-year transplant-free survival (TFS) were identified using multivariable Cox proportional hazards regression. Those associated with TFS after adjustment for false discovery in the discovery cohort were advanced for testing in the validation cohort, with proteins maintaining TFS association with consistent effect direction considered validated. After combining cohorts, functional analyses were performed, and machine learning used to derive a proteomic signature of TFS. MAIN RESULTS: Of 2921 proteins tested in the discovery cohort (n=871), 231 were associated with differential TFS. Of these, 140 maintained TFS association with consistent effect direction in the validation cohort (n=355). After combining cohorts, validated proteins with strongest TFS association were latent-transforming growth factor beta-binding protein 2 (HR 2.43, 95% CI 2.09-2.82), collagen alpha-1(XXIV) chain (HR 2.21; 95% CI 1.86-2.39) and keratin 19 (HR 1.60; 95% CI 1.47-1.74). In decision curve analysis, a proteomic signature of TFS outperformed a similarly derived clinical prediction model. CONCLUSIONS: In largest proteomic investigation of IPF outcomes performed to date, we identified and validated 140 protein biomarkers of TFS. These results shed important light on potential drivers of IPF progression.

11.
Respir Res ; 24(1): 132, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37194070

RESUMEN

BACKGROUND: Myo-inositol (or inositol) and its derivatives not only function as important metabolites for multiple cellular processes but also act as co-factors and second messengers in signaling pathways. Although inositol supplementation has been widely studied in various clinical trials, little is known about its effect on idiopathic pulmonary fibrosis (IPF). Recent studies have demonstrated that IPF lung fibroblasts display arginine dependency due to loss of argininosuccinate synthase 1 (ASS1). However, the metabolic mechanisms underlying ASS1 deficiency and its functional consequence in fibrogenic processes are yet to be elucidated. METHODS: Metabolites extracted from primary lung fibroblasts with different ASS1 status were subjected to untargeted metabolomics analysis. An association of ASS1 deficiency with inositol and its signaling in lung fibroblasts was assessed using molecular biology assays. The therapeutic potential of inositol supplementation in fibroblast phenotypes and lung fibrosis was evaluated in cell-based studies and a bleomycin animal model, respectively. RESULTS: Our metabolomics studies showed that ASS1-deficient lung fibroblasts derived from IPF patients had significantly altered inositol phosphate metabolism. We observed that decreased inositol-4-monophosphate abundance and increased inositol abundance were associated with ASS1 expression in fibroblasts. Furthermore, genetic knockdown of ASS1 expression in primary normal lung fibroblasts led to the activation of inositol-mediated signalosomes, including EGFR and PKC signaling. Treatment with inositol significantly downregulated ASS1 deficiency-mediated signaling pathways and reduced cell invasiveness in IPF lung fibroblasts. Notably, inositol supplementation also mitigated bleomycin-induced fibrotic lesions and collagen deposition in mice. CONCLUSION: These findings taken together demonstrate a novel function of inositol in fibrometabolism and pulmonary fibrosis. Our study provides new evidence for the antifibrotic activity of this metabolite and suggests that inositol supplementation may be a promising therapeutic strategy for IPF.


Asunto(s)
Fibrosis Pulmonar Idiopática , Inositol , Ratones , Animales , Inositol/farmacología , Inositol/uso terapéutico , Inositol/metabolismo , Pulmón/metabolismo , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/metabolismo , Bleomicina/toxicidad , Transducción de Señal/genética , Fibroblastos/metabolismo
12.
ACS Omega ; 8(9): 8885-8893, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36910976

RESUMEN

Traditional methods for synthesizing complex oligosaccharides currently developed are not efficient, requiring a new glycosylation methodology. Herein, using phosphotungstic acid (PTA) as a catalyst has demonstrated to be a simple possibility for carbohydrate synthesis. The methodology is engineered into a PTA-catalyzed thioglycoside preparation under microwave conditions and de-O-acetylation of carbohydrates. These easier operations and convenient protocols display a wide substrate scope. Moreover, both methods can be developed into a one-pot reaction for the efficient synthesis of carbohydrate analogues.

13.
Int J Public Health ; 68: 1605332, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36726527

RESUMEN

Objectives: We investigated the associations of mean levels of leisure-time physical activity (LTPA) and latent LTPA trajectories with all-cause mortality risk. Methods: Trajectories of LTPA were established using group-based trajectory analysis with a latent class growth model in a population-based cohort between 1996 and 2014. A Cox-proportional hazard model was conducted to examine the associations of LTPA quintiles and LTPA trajectories with all-cause mortality. Results: A total of 21,211 participants (age 18-90 years) were analyzed (median follow-up 16.8 years). The study participants were divided into five groups according to percentiles of LTPA (<20th, 20th-<40th, 40th-<60th, 60th-<80th, ≥80th) and LTPA trajectories (low/stable, medium/stable, increasing, decreasing, and fluctuating), respectively. Participants with a decreasing trajectory did not have a significantly lower risk of all-cause mortality despite having the highest baseline level of LTPA. In contrast, participants with a medium/stable (HR 0.84, 95% CI 0.72-0.98, p = 0.031) or an increasing (HR 0.57, 95% CI 0.33-0.97, p = 0.037) trajectory had a significantly lower risk of all-cause mortality. Conclusion: Promotion of maintaining stable LTPA is beneficial for public health and survival.


Asunto(s)
Ejercicio Físico , Actividades Recreativas , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Humanos , Persona de Mediana Edad , Adulto Joven , Actividad Motora , Modelos de Riesgos Proporcionales , Factores de Riesgo
14.
Redox Rep ; 28(1): 2152607, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36692085

RESUMEN

Renal proximal tubular cells are highly vulnerable to different types of assaults during filtration and reabsorption, leading to acute renal dysfunction and eventual chronic kidney diseases (CKD). The chemotherapeutic drug cisplatin elicits cytotoxicity causing renal tubular cell death, but its executing mechanisms of action are versatile and elusive. Here, we show that cisplatin induces renal tubular cell apoptosis and ferroptosis by disrupting glutathione (GSH) metabolism. Upon cisplatin treatment, GSH metabolism is impaired leading to GSH depletion as well as the execution of mitochondria-mediated apoptosis and lipid oxidation-related ferroptosis through activating IL6/JAK/STAT3 signaling. Inhibition of JAK/STAT3 signaling reversed cell apoptosis and ferroptosis in response to cisplatin induction. Using a cisplatin-induced acute kidney injury (CAKI) mouse model, we found that inhibition of JAK/STAT3 significantly mitigates cisplatin nephrotoxicity with a reduced level of serum BUN and creatinine as well as proximal tubular distortion. In addition, the GSH booster baicalein also reclaims cisplatin-induced renal tubular cell apoptosis and ferroptosis as well as the in vivo nephrotoxicity. In conclusion, cisplatin disrupts glutathione metabolism, leading to renal tubular cell apoptosis and ferroptosis. Rewiring glutathione metabolism represents a promising strategy for combating cisplatin nephrotoxicity.


Asunto(s)
Lesión Renal Aguda , Ferroptosis , Ratones , Animales , Cisplatino , Apoptosis , Riñón/metabolismo , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/metabolismo , Glutatión/metabolismo
15.
Immunology ; 168(2): 331-345, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36183155

RESUMEN

Methylthioadenosine phosphorylase (MTAP) deficiency occurs in various malignancies and is associated with poor survival in cancer patients. However, the mechanisms underlying tumour progression due to MTAP loss are yet to be elucidated. Utilizing integrated analyses of the transcriptome, proteome and secretome, we demonstrated that MTAP deficiency alters tumour-intrinsic, immune-related pathways and reprograms cytokine profiles towards a tumour-favourable environment. Additionally, MTAP-knockout cells exhibited a marked increase in the immune checkpoint protein PD-L1. Upon co-culturing primary T cells with cancer cells, MTAP loss-mediated PD-L1 upregulation inhibited T cell-mediated killing activity and induced several T cell exhaustion markers. In two xenograft tumour models, we showed a modest increase in average volume of tumours derived from MTAP-deficient cells than that of MTAP-proficient tumours. Surprisingly, a remarkable increase in tumour size was observed in humanized mice bearing MTAP-deficient tumours, as compared to their MTAP-expressing counterparts. Following immunophenotypic characterization of tumour-infiltrating leukocytes by mass cytometry analysis, MTAP-deficient tumours were found to display decreased immune infiltrates with lower proportions of both T lymphocytes and natural killer cells and higher proportions of immunosuppressive cells as compared to MTAP-expressing tumour xenografts. Taken together, our results suggest that MTAP deficiency restructures the tumour immune microenvironment, promoting tumour progression and immune evasion.


Asunto(s)
Antígeno B7-H1 , Neoplasias , Humanos , Animales , Ratones , Antígeno B7-H1/metabolismo , Purina-Nucleósido Fosforilasa/metabolismo , Neoplasias/metabolismo , Linfocitos T/metabolismo , Microambiente Tumoral
16.
Cancers (Basel) ; 14(19)2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36230850

RESUMEN

The myristoylated alanine-rich C-kinase substrate (MARCKS) is a membrane-associated protein kinase C (PKC) substrate ubiquitously expressed in eukaryotic cells. MARCKS plays important roles in multiple cellular processes, including cell adhesion and motility, mucin secretion, exocytosis, and inflammatory response. Aberrant MARCKS signaling has been observed in the development and progression of multiple cancer types. In addition, MARCKS facilitates cancer metastasis through modulating cancer cell migration and invasion. Moreover, MARCKS contributes to treatment resistance, likely by promoting cancer stem cell renewal as well as immunosuppression. In this review, we describe MARCKS protein structure, cellular localization, and biological functions. We then discuss the role of MARCKS in cancer metastasis as well as its mechanisms of action in solid tumors. Finally, we review recent advances in targeting MARCKS as a new therapeutic strategy in cancer management.

17.
EMBO Rep ; 23(8): e54265, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35766227

RESUMEN

The aggressive nature and poor prognosis of lung cancer led us to explore the mechanisms driving disease progression. Utilizing our invasive cell-based model, we identified methylthioadenosine phosphorylase (MTAP) and confirmed its suppressive effects on tumorigenesis and metastasis. Patients with low MTAP expression display worse overall and progression-free survival. Mechanistically, accumulation of methylthioadenosine substrate in MTAP-deficient cells reduce the level of protein arginine methyltransferase 5 (PRMT5)-mediated symmetric dimethylarginine (sDMA) modification on proteins. We identify vimentin as a dimethyl-protein whose dimethylation levels drop in response to MTAP deficiency. The sDMA modification on vimentin reduces its protein abundance but trivially affects its filamentous structure. In MTAP-deficient cells, lower sDMA modification prevents ubiquitination-mediated vimentin degradation, thereby stabilizing vimentin and contributing to cell invasion. MTAP and PRMT5 negatively correlate with vimentin in lung cancer samples. Taken together, we propose a mechanism for metastasis involving vimentin post-translational regulation.


Asunto(s)
Neoplasias Pulmonares , Purina-Nucleósido Fosforilasa , Humanos , Neoplasias Pulmonares/genética , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Purina-Nucleósido Fosforilasa/metabolismo , Vimentina/genética
18.
Int J Mol Sci ; 22(24)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34948109

RESUMEN

The innate and adaptive immunities have been documented to participate in the pathogenesis of nephrotoxic acute kidney injury (AKI); however, the mechanisms controlling these processes have yet to be established. In our cisplatin-induced AKI mouse model, we show pathological damage to the kidneys, with the classical markers elevated, consistent with the response to cisplatin treatment. Through assessments of the components of the immune system, both locally and globally, we demonstrate that the immune microenvironment of injured kidneys was associated with an increased infiltration of CD4+ T cells and macrophages concomitant with decreased Treg cell populations. Our cell-based assays and animal studies further show that cisplatin exposure downregulated the protein levels of programmed death-ligand 1 (PD-L1), an immune checkpoint protein, in primary renal proximal tubular epithelial cells, and that these inhibitions were dose-dependent. After orthotopic delivery of PD-L1 gene into the kidneys, cisplatin-exposed mice displayed lower levels of both serum urea nitrogen and creatinine upon PD-L1 expression. Our data suggest a renoprotective effect of the immune checkpoint protein, and thereby provide a novel therapeutic strategy for cisplatin-induced AKI.


Asunto(s)
Lesión Renal Aguda , Antígeno B7-H1 , Cisplatino/efectos adversos , Células Epiteliales/metabolismo , Técnicas de Transferencia de Gen , Túbulos Renales Proximales/metabolismo , Regulación hacia Arriba , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/genética , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/terapia , Animales , Antígeno B7-H1/biosíntesis , Antígeno B7-H1/genética , Linfocitos T CD4-Positivos/metabolismo , Cisplatino/farmacología , Modelos Animales de Enfermedad , Macrófagos/metabolismo , Ratones
19.
Obes Sci Pract ; 7(3): 339-345, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34123401

RESUMEN

Obesity is considered as a risk factor for COVID-19 with insulin resistance and increased production of inflammatory cytokines as likely mechanisms. Glucagon-like peptide-1 (GLP-1) agonists and inhaled nitric oxide are proposed therapeutic approaches to treat COVID-19 because of their broad anti-inflammatory effects. One approach that might augment GLP-1 levels would be dietary supplementation with L-arginine. Beyond cytokines, multiple studies have started to investigate the relationship between new-onset diabetes and COVID-19. In a posthoc analysis of a randomized, placebo-controlled human clinical trial of L-arginine supplementation in people with asthma and predominantly with obesity, the results showed that 12 weeks of continuous L-arginine supplementation significantly decreased the level of IL-21 (p = 0.02) and increased the level of insulin (p = 0.02). A high arginine level and arginine/ADMA ratio were significantly associated with lower CCL-20 and TNF-α levels. The study also showed that L-arginine supplementation reduces cytokine levels and improves insulin deficiency or resistance, both are two big risk factors for COVID-19 severity and mortality. Given its safety profile and ease of accessibility, L-arginine is an attractive potential therapeutic option that allows for a cost-effective way to improve outcomes in patients. An expedition of further investigation or clinical trials to test these hypotheses is needed.

20.
Am J Respir Cell Mol Biol ; 64(6): 734-746, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33730527

RESUMEN

Tobacco smoking is a well-known risk factor for both fibrogenesis and fibrotic progression; however, the mechanisms behind these processes remain enigmatic. RTKs (receptor tyrosine kinases) have recently been reported to drive profibrotic phenotypes in fibroblasts during pulmonary fibrosis (PF). Using a phospho-RTK array screen, we identified the RTK AXL as a top upregulated RTK in response to smoke. Both expression and signaling activity of AXL were indeed elevated in lung fibroblasts exposed to tobacco smoke, whereas no significant change to the levels of a canonical AXL ligand, Gas6 (growth arrest-specific 6), was seen upon smoke treatment. Notably, we found that smoke-exposed human lung fibroblasts exhibited highly proliferative and invasive activities and were capable of inducing fibrotic lung lesions in mice. Conversely, genetic suppression of AXL in smoke-exposed fibroblasts cells led to suppression of AXL downstream pathways and aggressive phenotypes. We further demonstrated that AXL interacted with MARCKS (myristoylated alanine-rich C kinase substrate) and cooperated with MARCKS in regulating downstream signaling activity and fibroblast invasiveness. Pharmacological inhibition of AXL with AXL-specific inhibitor R428 showed selectivity for smoke-exposed fibroblasts. In all, our data suggest that AXL is a potential marker for smoke-associated PF and that targeting of the AXL pathway is a potential therapeutic strategy in treating tobacco smoking-related PF.


Asunto(s)
Proteínas Proto-Oncogénicas/metabolismo , Fibrosis Pulmonar/etiología , Fibrosis Pulmonar/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Fumar/efectos adversos , Animales , Supervivencia Celular , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Pulmón/patología , Ratones Endogámicos C57BL , Sustrato de la Proteína Quinasa C Rico en Alanina Miristoilada/metabolismo , Fenotipo , Fibrosis Pulmonar/patología , Transducción de Señal , Regulación hacia Arriba/genética , Tirosina Quinasa del Receptor Axl
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA