RESUMEN
The escalating prevalence of Parkinson's disease (PD) underscores the need for innovative therapeutic interventions since current palliative measures, including the standard l-Dopa formulations, face challenges of tolerance and side effects while failing to address the underlying neurodegenerative processes. Here, we introduce DAD9, a novel conjugate molecule that aims to combine symptomatic relief with disease-modifying strategies for PD. Crafted through knowledge-guided chemistry, the molecule combines a nonantibiotic doxycycline derivative with dopamine, preserving neuroprotective attributes while maintaining dopaminergic agonism. This compound exhibited no off-target effects on PD-relevant cell functions and sustained antioxidant and anti-inflammatory properties of the tetracycline precursor. Furthermore, it effectively interfered with the formation and seeding of toxic α-synuclein aggregates without producing detrimental oxidative species. In addition, DAD9 was able to activate dopamine receptors, and docking simulations shed light onto the molecular details of this interaction. These findings position DAD9 as a potential neuroprotective dopaminergic agonist, promising advancements in PD therapeutics.
Asunto(s)
Dopamina , Diseño de Fármacos , Fármacos Neuroprotectores , Enfermedad de Parkinson , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Humanos , Dopamina/metabolismo , alfa-Sinucleína/metabolismo , alfa-Sinucleína/efectos de los fármacos , Doxiciclina/farmacología , Doxiciclina/síntesis química , Agonistas de Dopamina/farmacología , Agonistas de Dopamina/síntesis química , Simulación del Acoplamiento Molecular , AnimalesRESUMEN
The effect of lactocin AL705, bacteriocin produced by Latilactobacillus (Lat.) curvatus CRL1579 against Listeria biofilms on stainless steel (SS) and polytetrafluoroethylene (PTFE) coupons at 10 °C was investigated. L. monocytogenes FBUNT showed the greatest adhesion on both surfaces associated to the hydrophobicity of cell surface. Partially purified bacteriocin (800 UA/mL) effectively inhibited L. monocytogenes preformed biofilm through displacement strategy, reducing the pathogen by 5.54 ± 0.26 and 4.74 ± 0.05 log cycles at 3 and 6 days, respectively. The bacteriocin-producer decreased the pathogen biofilm by â¼2.84 log cycles. Control and Bac- treated samples reached cell counts of 7.05 ± 0.18 and 6.79 ± 0.06 log CFU/cm2 after 6 days of incubation. Confocal scanning laser microscopy (CLSM) allowed visualizing the inhibitory effect of lactocin AL705 on L. monocytogenes preformed biofilms under static and hydrodynamic flow conditions. A greater effect of the bacteriocin was found at 3 days independently of the surface matrix and pathogen growth conditions at 10 °C. As a more realistic approach, biofilm displacement strategy under continuous flow conditions showed a significant loss of biomass, mean thickness and substratum coverage of pathogen biofilm. These findings highlight the anti-biofilm capacity of lactocin AL705 and their potential application in food industries.
Asunto(s)
Bacteriocinas , Listeria monocytogenes , Listeria , Biopelículas , Bacteriocinas/farmacología , Lactobacillus , Acero Inoxidable/análisis , Microbiología de AlimentosRESUMEN
The early sequencing of the SARS-CoV-2 viral genome allowed for a speedy development of effective vaccines against the virus. Nevertheless, age-related immunosenescence, the inability to mount strong immune responses, still represents a major obstacle. Here, in a group of 149 elderly volunteers (70-96 years old), evolution of the humoral immune response over time to Gam-COVID-Vac (Sputnik V), a vaccine based on heterologous recombinant adenovirus-26 (Ad26) and adenovirus-5 (Ad5) carrying the Spike genome, was analyzed by an anti-RBD ELISA. At 28 days post vaccination (dpv), a seroconversion rate of 91% was achieved, showing the importance of administering at least two doses of Gam-COVID-Vac to elicit a robust immune response, especially in elderly individuals without previous SARS-CoV-2 infection. Interestingly, IgG specific antibodies that reached their highest titers around 28 dpv (median = 740), persisted without significant decrease after 60 dpv (median = 650). After 90 dpv, IgG titers began to drop, and at 180 dpv only 44.7% of the elderly individuals remained with detectable anti-RBD IgG antibodies. No significant differences were observed in specific humoral immune responses between genders at early times point. However, at 60 dpv anti-RBD titers were more persistent in elderly females, and only dropped at 90 dpv (p < 0.0001). As expected, the highest antibodies titers were elicited in the youngest subgroup (70-74 years). Our results show that Gam-COVID-Vac was able to deal with the ageing of the immune system, eliciting a robust immune response in an elderly cohort, which lasted approximately 90 dpv at high levels, and protected against COVID-19.
Asunto(s)
COVID-19 , Vacunas Virales , Adenoviridae/genética , Anciano , Anciano de 80 o más Años , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Femenino , Humanos , Inmunidad Humoral , Inmunoglobulina G , Masculino , SARS-CoV-2RESUMEN
The antibiotic tetracycline demeclocycline (DMC) was recently reported to rescue α-synuclein (α-Syn) fibril-induced pathology. However, the antimicrobial activity of DMC precludes its potential use in long-term neuroprotective treatments. Here, we synthesized a doubly reduced DMC (DDMC) derivative with residual antibiotic activity and improved neuroprotective effects. The molecule was obtained by removal the dimethylamino substituent at position 4 and the reduction of the hydroxyl group at position 12a on ring A of DMC. The modifications strongly diminished its antibiotic activity against Gram-positive and Gram-negative bacteria. Moreover, this compound preserved the low toxicity of DMC in dopaminergic cell lines while improving its ability to interfere with α-Syn amyloid-like aggregation, showing the highest effectiveness of all tetracyclines tested. Likewise, DDMC demonstrated the ability to reduce seeding induced by the exogenous addition of α-Syn preformed fibrils (α-SynPFF) in biophysical assays and in a SH-SY5Y-α-Syn-tRFP cell model. In addition, DDMC rendered α-SynPFF less inflammogenic. Our results suggest that DDMC may be a promising drug candidate for hit-to-lead development and preclinical studies in Parkinson's disease and other synucleinopathies.
Asunto(s)
Neuroblastoma , Fármacos Neuroprotectores , Sinucleinopatías , Antibacterianos/farmacología , Demeclociclina , Bacterias Gramnegativas , Bacterias Grampositivas , Humanos , Plomo , Fármacos Neuroprotectores/farmacologíaRESUMEN
BACKGROUND: Gam-COVID-Vac (SPUTNIK V) has been granted emergency use authorization in 70 nations and has been administered to millions worldwide. However, there are very few peer-reviewed studies describing its effects. Independent reports regarding safety and effectiveness could accelerate the final approval by the WHO. We aimed to study the long-term humoral immune response in naïve and previously infected volunteers who received SPUTNIK V. METHODS: Humoral immune responses, assayed by anti-SARS-CoV-2-spike-RBD IgG ELISA and neutralization assays, were measured in 602 healthcare workers at 0, 14, 28, 60 and 180 days after receiving SPUTNIK V between December 2020 and July 2021 in Tucumán, Argentina. FINDINGS: Seroconversion was detected in 97% of individuals after 28 days post-vaccination (dpv) (N = 405). Anti-RBD titers began to decrease after 60 dpv (N = 328), but remained detectable in 94% at 90 dpv (N = 224). At 180 dpv, anti-RDB titers persisted in 31% (N = 146). Previous infection triggered an increased immune response to the first dose and increased neutralization activity against variants of concern (VOC). Second doses in previously infected individuals further increased titers, even 90 dpv (N = 75). Basal antibody titers had more influence on post-vaccination anti-RBD responses than the time elapsed between diagnosis and vaccination (N = 274). INTERPRETATION: Data presented herein provides essential knowledge regarding the kinetics of antibodies induced by SPUTNIK V up to six months after immunization, and suggests that when considering one-dose vaccination policies for individuals with previous SARS-CoV-2 infection, serological studies to determine basal titers may be important, independent of when diagnosis occurred. FUNDING: Tucumán Public Health System (SIPROSA), Argentinean National Research Council (CONICET), National University of Tucumán (UNT).
RESUMEN
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused a global pandemic with dramatic health and socioeconomic consequences. The Coronavirus Disease 2019 (COVID-19) challenges health systems to quickly respond by developing new diagnostic strategies that contribute to identify infected individuals, monitor infections, perform contact-tracing, and limit the spread of the virus. In this brief report, we developed a highly sensitive, specific, and precise "In-House" ELISA to correctly discriminate previously SARS-CoV-2-infected and non-infected individuals and study population seroprevalence. Among 758 individuals evaluated for anti-SARS-CoV-2 serology in the province of Tucumán, Argentina, we found a weak correlation between antibodies elicited against the RBD, the receptor-binding domain of the Spike protein, and the nucleocapsid (N) antigens of this virus. Additionally, we detected mild levels of anti-RBD IgG antibodies in 33.6% of individuals diagnosed with COVID-19, while only 19% showed sufficient antibody titers to be considered as plasma donors. No differences in IgG anti-RBD titers were found between women and men, neither in between different age groups ranging from 18 to 60. Surprisingly, individuals from a high altitude village displayed elevated and longer lasting anti-RBD titers compared to those from a lower altitude city. To our knowledge, this is the first report correlating altitude with increased humoral immune response against SARS-CoV-2 infection.
RESUMEN
Tauopathies are neurodegenerative disorders with increasing incidence and still without cure. The extensive time required for development and approval of novel therapeutics highlights the need for testing and repurposing known safe molecules. Since doxycycline impacts α-synuclein aggregation and toxicity, herein we tested its effect on tau. We found that doxycycline reduces amyloid aggregation of the 2N4R and K18 isoforms of tau protein in a dose-dependent manner. Furthermore, in a cell free system doxycycline also prevents tau seeding and in cell culture reduces toxicity of tau aggregates. Overall, our results expand the spectrum of action of doxycycline against aggregation-prone proteins, opening novel perspectives for its repurposing as a disease-modifying drug for tauopathies.
RESUMEN
Parkinson's disease (PD) is a neurodegenerative disorder for which only symptomatic treatments are available. Repurposing drugs that target α-synuclein aggregation, considered one of the main drivers of PD progression, could accelerate the development of disease-modifying therapies. In this work, we focused on chemically modified tetracycline 3 (CMT-3), a derivative with reduced antibiotic activity that crosses the blood-brain barrier and is pharmacologically safe. We found that CMT-3 inhibited α-synuclein amyloid aggregation and led to the formation of non-toxic molecular species, unlike minocycline. Furthermore, CMT-3 disassembled preformed α-synuclein amyloid fibrils into smaller fragments that were unable to seed in subsequent aggregation reactions. Most interestingly, disaggregated species were non-toxic and less inflammogenic on brain microglial cells. Finally, we modelled the interactions between CMT-3 and α-synuclein aggregates by molecular simulations. In this way, we propose a mechanism for fibril disassembly. Our results place CMT-3 as a potential disease modifier for PD and possibly other synucleinopathies.
Asunto(s)
Inflamación/inducido químicamente , Tetraciclinas/farmacología , alfa-Sinucleína/toxicidad , Reposicionamiento de Medicamentos , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Agregado de Proteínas , Tetraciclinas/uso terapéutico , alfa-Sinucleína/metabolismoRESUMEN
The prevalence of Parkinson's disease, which affects millions of people worldwide, is increasing due to the aging population. In addition to the classic motor symptoms caused by the death of dopaminergic neurons, Parkinson's disease encompasses a wide range of nonmotor symptoms. Although novel disease-modifying medications that slow or stop Parkinson's disease progression are being developed, drug repurposing, which is the use of existing drugs that have passed numerous toxicity and clinical safety tests for new indications, can be used to identify treatment compounds. This strategy has revealed that tetracyclines are promising candidates for the treatment of Parkinson's disease. Tetracyclines, which are neuroprotective, inhibit proinflammatory molecule production, matrix metalloproteinase activity, mitochondrial dysfunction, protein misfolding/aggregation, and microglial activation. Two commonly used semisynthetic second-generation tetracycline derivatives, minocycline and doxycycline, exhibit effective neuroprotective activity in experimental models of neurodegenerative/ neuropsychiatric diseases and no substantial toxicity. Moreover, novel synthetic tetracyclines with different biological properties due to chemical tuning are now available. In this review, we discuss the multiple effects and clinical properties of tetracyclines and their potential use in Parkinson's disease treatment. In addition, we examine the hypothesis that the anti-inflammatory activities of tetracyclines regulate inflammasome signaling. Based on their excellent safety profiles in humans from their use for over 50 years as antibiotics, we propose the repurposing of tetracyclines, a multitarget antibiotic, to treat Parkinson's disease.
Asunto(s)
Reposicionamiento de Medicamentos , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Tetraciclinas/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Apoptosis/efectos de los fármacos , Doxiciclina/farmacología , Doxiciclina/uso terapéutico , Depuradores de Radicales Libres/farmacología , Depuradores de Radicales Libres/uso terapéutico , Humanos , Inflamasomas/antagonistas & inhibidores , Minociclina/farmacología , Minociclina/uso terapéutico , Mitocondrias/efectos de los fármacos , Estructura Molecular , Fármacos Neuroprotectores/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/uso terapéutico , Agregado de Proteínas/efectos de los fármacos , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/administración & dosificación , Relación Estructura-Actividad , Tetraciclinas/química , Tetraciclinas/farmacologíaRESUMEN
Neurodegenerative diseases are chronic and progressive disorders that affect specific regions of the brain, causing gradual disability and suffering that results in a complete inability of patients to perform daily functions. Amyloid aggregation of specific proteins is the most common biological event that is responsible for neuronal death and neurodegeneration in various neurodegenerative diseases. Therapeutic agents capable of interfering with the abnormal aggregation are required, but traditional drug discovery has fallen short. The exploration of new uses for approved drugs provides a useful alternative to fill the gap between the increasing incidence of neurodegenerative diseases and the long-term assessment of classical drug discovery technologies. Drug re-profiling is currently the quickest possible transition from bench to bedside. In this way, experimental evidence shows that some antibiotic compounds exert neuroprotective action through anti-aggregating activity on disease-associated proteins. The finding that many antibiotics can cross the blood-brain barrier and have been used for several decades without serious toxic effects makes them excellent candidates for therapeutic switching towards neurological disorders. The present review is, to our knowledge, the first extensive evaluation and analysis of the anti-amyloidogenic effect of different antibiotics on well-known disease-associated proteins. In addition, we propose a common structural signature derived from the antiaggregant antibiotic molecules that could be relevant to rational drug discovery.
Asunto(s)
Péptidos beta-Amiloides/efectos de los fármacos , Antibacterianos/farmacología , Reposicionamiento de Medicamentos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , HumanosRESUMEN
The close relationship between protein aggregation and neurodegenerative diseases has been the driving force behind the renewed interest in a field where biophysics, neurobiology and nanotechnology converge in the study of the aggregate state. On one hand, knowledge of the molecular principles that govern the processes of protein aggregation has a direct impact on the design of new drugs for high-incidence pathologies that currently can only be treated palliatively. On the other hand, exploiting the benefits of protein aggregation in the design of new nanomaterials could have a strong impact on biotechnology. Here we review the contributions of our research group on novel neuroprotective strategies developed using a purely biophysical approach. First, we examine how doxycycline, a well-known and innocuous antibiotic, can reshape α-synuclein oligomers into non-toxic high-molecular-weight species with decreased ability to destabilize biological membranes, affect cell viability and form additional toxic species. This mechanism can be exploited to diminish the toxicity of α-synuclein oligomers in Parkinson's disease. Second, we discuss a novel function in proteostasis for extracellular glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in combination with a specific glycosaminoglycan (GAG) present in the extracellular matrix. GAPDH, by changing its quaternary structure from a tetramer to protofibrillar assembly, can kidnap toxic species of α-synuclein, and thereby interfere with the spreading of the disease. Finally, we review a brighter side of protein aggregation, that of exploiting the physicochemical advantages of amyloid aggregates as nanomaterials. For this, we designed a new generation of insoluble biocatalysts based on the binding of photo-immobilized enzymes onto hybrid protein:GAG amyloid nanofibrils. These new nanomaterials can be easily functionalized by attaching different enzymes through dityrosine covalent bonds.
RESUMEN
Synucleinophaties are progressive neurodegenerative disorders with no cure to date. An attractive strategy to tackle this problem is repurposing already tested safe drugs against novel targets. In this way, doxycycline prevents neurodegeneration in Parkinson models by modulating neuroinflammation. However, anti-inflammatory therapy per se is insufficient to account for neuroprotection. Herein we characterise novel targets of doxycycline describing the structural background supporting its effectiveness as a neuroprotector at subantibiotic doses. Our results show that doxycycline reshapes α-synuclein oligomers into off-pathway, high-molecular-weight species that do not evolve into fibrils. Off-pathway species present less hydrophobic surface than on-pathway oligomers and display different ß-sheet structural arrangement. These structural changes affect the α-synuclein ability to destabilize biological membranes, cell viability, and formation of additional toxic species. Altogether, these mechanisms could act synergically giving novel targets for repurposing this drug.
Asunto(s)
Doxiciclina/farmacología , Reposicionamiento de Medicamentos , Enfermedades Neurodegenerativas/metabolismo , alfa-Sinucleína/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Doxiciclina/uso terapéutico , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/patología , Agregado de Proteínas/efectos de los fármacos , Agregación Patológica de Proteínas , Unión Proteica , Conformación Proteica en Lámina beta , Multimerización de Proteína , Espectroscopía Infrarroja por Transformada de Fourier , alfa-Sinucleína/químicaRESUMEN
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional enzyme that has been associated with neurodegenerative diseases. GAPDH colocalizes with α-synuclein in amyloid aggregates in post-mortem tissue of patients with sporadic Parkinson disease and promotes the formation of Lewy body-like inclusions in cell culture. In a previous work, we showed that glycosaminoglycan-induced GAPDH prefibrillar species accelerate the conversion of α-synuclein to fibrils. However, it remains to be determined whether the interplay among glycosaminoglycans, GAPDH, and α-synuclein has a role in pathological states. Here, we demonstrate that the toxic effect exerted by α-synuclein oligomers in dopaminergic cell culture is abolished in the presence of GAPDH prefibrillar species. Structural analysis of prefibrillar GAPDH performed by small angle x-ray scattering showed a particle compatible with a protofibril. This protofibril is shaped as a cylinder 22 nm long and a cross-section diameter of 12 nm. Using biocomputational techniques, we obtained the first all-atom model of the GAPDH protofibril, which was validated by cross-linking coupled to mass spectrometry experiments. Because GAPDH can be secreted outside the cell where glycosaminoglycans are present, it seems plausible that GAPDH protofibrils could be assembled in the extracellular space kidnapping α-synuclein toxic oligomers. Thus, the role of GAPDH protofibrils in neuronal proteostasis must be considered. The data reported here could open alternative ways in the development of therapeutic strategies against synucleinopathies like Parkinson disease.
Asunto(s)
Gliceraldehído-3-Fosfato Deshidrogenasas/química , Gliceraldehído-3-Fosfato Deshidrogenasas/farmacología , Heparina/farmacología , Multimerización de Proteína/efectos de los fármacos , alfa-Sinucleína/química , alfa-Sinucleína/toxicidad , Secuencia de Aminoácidos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Reactivos de Enlaces Cruzados/farmacología , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Neuronas/citología , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Estructura Secundaria de ProteínaRESUMEN
Development of an artificial enzyme with activity and structure comparable to that of natural enzymes is an important goal in biological chemistry. Respiratory NADH dehydrogenase-2 (NDH-2) of Escherichia coli is a peripheral membrane-bound flavoprotein, belonging to a group of enzymes with scarce structural information. By eliminating the C-terminal region of NDH-2, a water soluble version with significant enzymatic activity was previously obtained. Here, NDH-2 structural features were established, in comparison to those of the truncated version. Far-UV circular dichroism, Fourier transform infrared spectroscopy and limited proteolysis analysis showed that the overall structure of both proteins was similar at 30 °C. Experimental data agree with the predicted NDH-2 structure (PDB: 1OZK). The absence of C-terminal region stabilized in â¼5-10 °C the truncated protein conformation. However, truncation impaired enzymatic activity at low temperatures, probably due to the weak interaction of the mutant protein with FAD cofactor.
Asunto(s)
Proteínas Bacterianas/química , Escherichia coli/enzimología , NADH Deshidrogenasa/química , Proteínas Bacterianas/genética , Dicroismo Circular , Estabilidad de Enzimas , Escherichia coli/química , Flavina-Adenina Dinucleótido/química , Cinética , NADH Deshidrogenasa/genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteolisis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Espectroscopía Infrarroja por Transformada de Fourier , TemperaturaRESUMEN
Amyloid aggregation of polypeptides is related to a growing number of pathologic states known as amyloid disorders. At present, it is clear that any proteins submitted to appropriate physicochemical environment can acquire fibrilar conformation. Fourier transform infrared spectroscopy (FTIR) has been a widely used technique to study temperature- induced amyloid-fibrils formation in vitro. In this way, strict changes and temperature controls are required to characterize the physicochemical basis of the amyloid-fibrils formation. In this article, the development of a highly efficient and accurate Peltier-based system to improve FTIR measurements is presented (see An Old Physics Phenomenon Applied to a Serious Biomedical Pathology. The accuracy of the thermostatic control was tested with biophysical parameters on biological samples probing its reproducibility. The design of the present device contributes to maintain the FTIR environment stable, which represents a real contribution to improve the spectral quality and thus, the reliability of the results.
Asunto(s)
Amiloide/análisis , Electrónica/instrumentación , Espectroscopía Infrarroja por Transformada de Fourier/instrumentación , Amiloide/química , Animales , Calibración , Bovinos , Diseño de Equipo , Lípidos/análisis , Liposomas/análisis , Albúmina Sérica Bovina/análisis , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Termodinámica , Interfaz Usuario-ComputadorRESUMEN
Lewy bodies and Lewy neurites, neuropathological hallmarks of several neurological diseases, are mainly made of filamentous assemblies of α-synuclein. However, other macromolecules including Tau, ubiquitin, glyceraldehyde-3-phosphate dehydrogenase, and glycosaminoglycans are routinely found associated with these amyloid deposits. Glyceraldehyde-3-phosphate dehydrogenase is a glycolytic enzyme that can form fibrillar aggregates in the presence of acidic membranes, but its role in Parkinson disease is still unknown. In this work, the ability of heparin to trigger the amyloid aggregation of this protein at physiological conditions of pH and temperature is demonstrated by infrared and fluorescence spectroscopy, dynamic light scattering, small angle x-ray scattering, circular dichroism, and fluorescence microscopy. Aggregation proceeds through the formation of short rod-like oligomers, which elongates in one dimension. Heparan sulfate was also capable of inducing glyceraldehyde-3-phosphate dehydrogenase aggregation, but chondroitin sulfates A, B, and C together with dextran sulfate had a negligible effect. Aided with molecular docking simulations, a putative binding site on the protein is proposed providing a rational explanation for the structural specificity of heparin and heparan sulfate. Finally, it is demonstrated that in vitro the early oligomers present in the glyceraldehyde-3-phosphate dehydrogenase fibrillation pathway promote α-synuclein aggregation. Taking into account the toxicity of α-synuclein prefibrillar species, the heparin-induced glyceraldehyde-3-phosphate dehydrogenase early oligomers might come in useful as a novel therapeutic strategy in Parkinson disease and other synucleinopathies.
Asunto(s)
Amiloide/química , Gliceraldehído-3-Fosfato Deshidrogenasas/química , Heparina/química , Multimerización de Proteína , alfa-Sinucleína/química , Amiloide/metabolismo , Animales , Sulfatos de Condroitina/química , Sulfatos de Condroitina/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Heparitina Sulfato/química , Heparitina Sulfato/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Enfermedad de Parkinson/metabolismo , Conejos , alfa-Sinucleína/metabolismoRESUMEN
Microcin J25 (MccJ25) is a 21 amino acid lasso-peptide antibiotic produced by Escherichia coli and composed of an 8-residues ring and a terminal 'tail' passing through the ring. We have previously reported two cellular targets for this antibiotic, bacterial RNA polymerase and the membrane respiratory chain, and shown that Tyr9 is essential for the effect on the membrane respiratory chain which leads to superoxide overproduction. In the present paper we investigated the redox behavior of MccJ25 and the mutant MccJ25 (Y9F). Cyclic voltammetry measurements showed irreversible oxidation of both Tyr9 and Tyr20 in MccJ25, but infrared spectroscopy studies demonstrated that only Tyr9 could be deprotonated upon chemical oxidation in solution. Formation of a long-lived tyrosyl radical in the native MccJ25 oxidized by H2O2 was demonstrated by Electron Paramagnetic Resonance Spectroscopy; this radical was not detected when the reaction was carried out with the MccJ25 (Y9F) mutant. These results show that the essential Tyr9, but not Tyr20, can be easily oxidized and form a tyrosyl radical.
Asunto(s)
Antibacterianos/química , Bacteriocinas/química , Tirosina/química , Espectroscopía de Resonancia por Spin del Electrón , Ferricianuros , Peróxido de Hidrógeno/química , Oxidación-Reducción , Espectrofotometría Infrarroja , VibraciónRESUMEN
Even though our knowledge of how proteins misfold and aggregate is deeper nowadays, the mechanisms driving this process are still poorly understood. Among the factors involved, membranes should be taken into account. Indeed, convincing evidence suggests that membranes may influence protein folding, misfolding and aggregation. In fact, membrane lipid composition of different cellular types may attenuate or intensify the environmental pressure over protein folding equilibrium. In the present review the aim is to make an up-to-date analysis of the membrane influence on protein aggregation from a biophysical point of view in order to provide useful tools for researchers from other fields. In particular, we discuss how membranes can alter protein environment, e.g. increasing local protein concentration, lowering pH and dielectric constant, allowing accessibility to the hydrophobic milieu and promoting surface crowding, all of which will lead to protein aggregation. In addition, we review the role that specific lipids may exert on protein aggregation and finally we analyse the possible implication of membrane-related oxidative stress on amyloidogenesis.
Asunto(s)
Amiloide/metabolismo , Membrana Celular/fisiología , Modelos Biológicos , Biofisica , Membrana Celular/patología , Humanos , Estrés Oxidativo , Deficiencias en la Proteostasis/fisiopatología , TermodinámicaRESUMEN
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional enzyme related with Huntington's, Parkinson's and Alzheimer's diseases. The ability of negatively charged membranes to induce a rapid formation of GAPDH amyloid fibrils has been demonstrated, but the mechanisms by which GAPDH reaches the fibrillar state remains unclear. In this report, we describe the structural changes undergone by GAPDH at physiological pH and temperature conditions right from its interaction with acidic membranes until the amyloid fibril is formed. According to our results, the GAPDH-membrane binding induces a beta-structuring process along with a loss of quaternary structure in the enzyme. In this way, experimental evidences on the initial steps of GAPDH amyloid fibrils formation pathway are provided.
Asunto(s)
Amiloide/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Membranas Artificiales , Amiloide/ultraestructura , Gliceraldehído-3-Fosfato Deshidrogenasas/ultraestructura , Humanos , Microscopía Electrónica de Transmisión , Multimerización de Proteína , Espectroscopía Infrarroja por Transformada de FourierRESUMEN
Inhibition or reversion of protein self-aggregation has been suggested as a possible preventive mechanism against amyloid diseases, and many efforts are underway to found out molecules capable to restrain the protein aggregation process. In this paper, the inhibitory effects of thyroid hormone analogues on heat-induced fibrillation process of serum albumin are reported. Among the analogues tested, 3,5,3',5'-tetraiodothyroacetic and 3,5,3'-triiodothyroacetic acid showed the most important inhibitory effects on amyloid formation. Thyroxine exhibits a lesser protective effect, while 3,5,3'-triiodothyronine showed no significant inhibition. The gaining of a negative charge together with a size reduction of the hormone molecule could play an essential role in the inhibition of fibrils formation. According to infrared spectroscopy results, the thyroid hormones analogues protective effects proceed via the stabilization of the protein native structure. The current work demonstrates the effectiveness of naturally occurring molecules in the inhibition of albumin fibril formation.