RESUMEN
Thimet oligopeptidase (EC 3.4.24.15; EP24.15) and neurolysin (EC 3.4.24.16; EP24.16) are closely related enzymes involved in the metabolic inactivation of bioactive peptides. Both of these enzymes were previously shown to be secreted from a variety of cell types, although their primary sequence lacks a signal peptide. To investigate the mechanisms responsible for this secretion, we examined by confocal microscopy the subcellular localization of these two enzymes in the neuroendocrine cell line AtT20. Both EP24.15 and EP24.16 were found by immunohistochemistry to be abundantly expressed in AtT20 cells. Western blotting experiments confirmed that the immunoreactivity detected in the soma of these cells corresponded to previously cloned isoforms of the enzymes. At the subcellular level, both enzymes colocalized extensively with the integral trans-Golgi network protein, syntaxin-6, in the juxtanuclear region. In addition, both EP24.15 and EP24.16 were found within small vesicular organelles distributed throughout the cell body. Some, but not all, of these organelles also stained positively for ACTH. These results demonstrate that both EP24.15 and EP24.16 are present within the classical secretory pathway. Their colocalization with ACTH further suggests that they may be targeted to the regulated secretory pathway, even in the absence of a signal peptide.
Asunto(s)
Metaloendopeptidasas/metabolismo , Microscopía Confocal/métodos , Animales , Western Blotting , ConejosRESUMEN
Endopeptidase EC 3.4.24.16 (EP24.16c, neurolysin) and thimet oligopeptidase EC 3.4.24.15 are close related members of a large family of metalloproteases. Besides their cytosolic and membrane bound form, endopeptidase EC 3.4.24.16 appears to be present in the inner membrane of the mitochondria (EP24.16m). We have overexpressed two porcine EP24.16 isoforms in E. coli and purified the recombinant proteins to homogeneity. We show here that these peptidases hydrolyse a series of neuropeptides with similar rates and at sites reminiscent of those elicited by classically purified human brain EP24.16c. All neuropeptides, except neurotensin, were similarly cleaved by recombinant endopeptidase 3.4.24.15 (EP24.15, thimet oligopeptidase), another zinc-containing metalloenzyme structurally related to EP24.16. These two EP24.16 isoforms were drastically inhibited by Pro-Ile and dithiothreitol and remained unaffected by a specific carboalkyl inhibitor (CFP-AAY-pAb) directed toward the related EP24.15. The present purification procedure of EP24.16 should allow to establish, by mutagenesis analysis, the mechanistic properties of the enzyme.