Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Evolution ; 78(2): 342-354, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38038256

RESUMEN

How does niche expansion occur when the habitual (high-productivity) and marginal (low-productivity) niches are simultaneously available? Without spatial structuring, such conditions should impose fitness maintenance in the former while adapting to the latter. Hence, adaptation to a given marginal niche should be influenced by the identity of the simultaneously available habitual niche. This hypothesis remains untested. Similarly, it is unknown if larger populations, which can access greater variation and undergo more efficient selection, are generally better at niche expansion. We tested these hypotheses using a large-scale evolution experiment with Escherichia coli. While we observed widespread niche expansion, larger populations consistently adapted to a greater extent to both marginal and habitual niches. Owing to diverse selection pressures in different habitual niches (constant vs. fluctuating environments; environmental fluctuations varying in both predictability and speed), fitness in habitual niches was significantly shaped by their identities. Surprisingly, despite this diversity in habitual selection pressures, adaptation to the marginal niche was unconstrained by the habitual niche's identity. We show that in terms of fitness, two negatively correlated habitual niches can still have positive correlations with the marginal niche. This allows the marginal niche to dilute fitness trade-offs across habitual niches, thereby allowing costless niche expansion. Our results provide fundamental insights into the sympatric niche expansion.


Asunto(s)
Adaptación Fisiológica , Escherichia coli , Densidad de Población
2.
Nat Commun ; 14(1): 3555, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37322016

RESUMEN

The evolutionary transition from unicellularity to multicellularity was a key innovation in the history of life. Experimental evolution is an important tool to study the formation of undifferentiated cellular clusters, the likely first step of this transition. Although multicellularity first evolved in bacteria, previous experimental evolution research has primarily used eukaryotes. Moreover, it focuses on mutationally driven (and not environmentally induced) phenotypes. Here we show that both Gram-negative and Gram-positive bacteria exhibit phenotypically plastic (i.e., environmentally induced) cell clustering. Under high salinity, they form elongated clusters of ~ 2 cm. However, under habitual salinity, the clusters disintegrate and grow planktonically. We used experimental evolution with Escherichia coli to show that such clustering can be assimilated genetically: the evolved bacteria inherently grow as macroscopic multicellular clusters, even without environmental induction. Highly parallel mutations in genes linked to cell wall assembly formed the genomic basis of assimilated multicellularity. While the wildtype also showed cell shape plasticity across high versus low salinity, it was either assimilated or reversed after evolution. Interestingly, a single mutation could genetically assimilate multicellularity by modulating plasticity at multiple levels of organization. Taken together, we show that phenotypic plasticity can prime bacteria for evolving undifferentiated macroscopic multicellularity.


Asunto(s)
Evolución Biológica , Eucariontes , Adaptación Fisiológica , Fenotipo , Bacterias
3.
Ecol Lett ; 24(9): 1943-1954, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34145720

RESUMEN

Theoretical models of ecological specialisation commonly assume that adaptation to one environment leads to fitness reductions (costs) in others. However, experiments often fail to detect such costs. We addressed this conundrum using experimental evolution with Escherichia coli in several constant and fluctuating environments at multiple population sizes. We found that in fluctuating environments, smaller populations paid significant costs, but larger ones avoided them altogether. Contrastingly, in constant environments, larger populations paid more costs than the smaller ones. Overall, large population sizes and fluctuating environments led to cost avoidance only when present together. Mutational frequency distributions obtained from whole-genome whole-population sequencing revealed that the primary mechanism of cost avoidance was the enrichment of multiple beneficial mutations within the same lineage. Since the conditions revealed by our study for avoiding costs are widespread, it provides a novel explanation of the conundrum of why the costs expected in theory are rarely detected in experiments.


Asunto(s)
Adaptación Fisiológica , Escherichia coli , Evolución Biológica , Escherichia coli/genética , Mutación , Densidad de Población , Selección Genética
4.
Heredity (Edinb) ; 124(6): 726-736, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32203249

RESUMEN

Evolutionary studies over the last several decades have invoked fitness trade-offs to explain why species prefer some environments to others. However, the effects of population size on trade-offs and ecological specialization remain largely unknown. To complicate matters, trade-offs themselves have been visualized in multiple ways in the literature. Thus, it is not clear how population size can affect the various aspects of trade-offs. To address these issues, we conducted experimental evolution with Escherichia coli populations of two different sizes in two nutritionally limited environments, and studied fitness trade-offs from three different perspectives. We found that larger populations evolved greater fitness trade-offs, regardless of how trade-offs are conceptualized. Moreover, although larger populations adapted more to their selection conditions, they also became more maladapted to other environments, ultimately paying heavier costs of adaptation. To enhance the generalizability of our results, we further investigated the evolution of ecological specialization across six different environmental pairs, and found that larger populations specialized more frequently and evolved consistently steeper reaction norms of fitness. This is the first study to demonstrate a relationship between population size and fitness trade-offs, and the results are important in understanding the population genetics of ecological specialization and vulnerability to environmental changes.


Asunto(s)
Adaptación Fisiológica , Evolución Molecular Dirigida , Escherichia coli , Escherichia coli/genética , Aptitud Genética , Genética de Población , Densidad de Población
5.
Evolution ; 73(4): 836-846, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30793291

RESUMEN

Larger populations generally adapt faster to their existing environment. However, it is unknown if the population size experienced during evolution influences the ability to face sudden environmental changes. To investigate this issue, we subjected replicate Escherichia coli populations of different sizes to experimental evolution in an environment containing a cocktail of three antibiotics. In this environment, the ability to actively efflux molecules outside the cell is expected to be a major fitness-affecting trait. We found that all the populations eventually reached similar fitness in the antibiotic cocktail despite adapting at different speeds, with the larger populations adapting faster. Surprisingly, although efflux activity (EA) enhanced in the smaller populations, it decayed in the larger ones. The evolution of EA was largely shaped by pleiotropic responses to selection and not by drift. This demonstrates that quantitative differences in population size can lead to qualitative differences (decay/enhancement) in the fate of a character during adaptation to identical environments. Furthermore, the larger populations showed inferior fitness upon sudden exposure to several alternative stressful environments. These observations provide a novel link between population size and vulnerability to environmental changes. Counterintuitively, adapting in larger numbers can render bacterial populations more vulnerable to abrupt environmental changes.


Asunto(s)
Adaptación Biológica , Escherichia coli/genética , Aptitud Genética , Fenotipo , Densidad de Población
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA