Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanoscale Adv ; 5(18): 4833-4851, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37705808

RESUMEN

The sustainable management of wastewater and the production of clean fuel with a reduced carbon footprint require innovative methods, including photocatalytic degradation of pollutants and hydrogen generation. To achieve this, biosynthesized photocatalysts are necessary, with carbon quantum dots (CQDs) being a promising candidate for achieving this goal. In this study, CQDs were prepared from water caltrop peels and a composite of greenly synthesized CQDs with copper selenide (CuSe) was used for the photocatalytic degradation of pollutants and production of fuel. Thymol blue (TB) and Congo red (CR) were chosen as model dyes for degradation studies, with optimized reaction conditions being determined by varying the dose, pH, intensity, and concentration of dyes. The composite (CuSe@CQDs) showed a degradation rate of 99.4% and 97.8% for TB and CR, respectively, within 60 minutes, with a corresponding hydrogen production rate of 2360 and 1875 µmol g-1 h-1. The yield of hydrogen production using the composite was 35.7 and 29 times greater than that of CuSe alone for TB and CR, respectively. Spectroscopic techniques such as XRD, UV-Vis, FESEM, HRTEM, XPS, FTIR, BET, and TGA were used to characterize the composite, and the results revealed that the composite had superior degradation rates compared to CuSe alone, with the degradation rate being enhanced by about three times. GCMS analysis was used to investigate the intermediate and possible degradation pathways. Overall, this study highlights the potential of biosynthesized CQDs as effective photocatalysts for the sustainable management of wastewater and production of fuel.

2.
Polym Bull (Berl) ; : 1-21, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37362957

RESUMEN

The preparation of polyaniline (PANI) and its copolymer with indole involved a chemical oxidative polymerization method, with benzene sulfonic acid (BSA, C6H6O3S) used as a dopant and potassium persulfate (PPS, K2S2O8) as an oxidant. The synthesized compounds underwent characterization using FTIR, 1H-NMR, TGA, and GPC techniques, which allowed the calculation of their average molecular weight and polydispersity index (PDI) through the GPC technique. The PDI values of the PANI copolymer with indole in different aniline-to-indole ratios were 1.53, 1.13, and 1.532 for 1:1, 1:2, and 2:1 ratios, respectively. Thermal stability was determined using TGA, revealing that the indole heterocyclic compound increased the inflexibility of the polymer chains in the synthesized PANI copolymer. The structure of the copolymer was further analyzed using 1HNMR and FTIR techniques, which confirmed the existence of benzenoid and quinoid groups in the PANI-indole copolymers, as well as the effect of doping on the polymer chains. The antibacterial and antifungal properties of the copolymers were studied against several bacterial and fungal strains and measured in terms of minimum inhibitory concentration. Results indicated that the inhibition rate of the PANI-indole copolymer on S. pyogenus (MTCC 442) was higher than that of standard drugs and individual PANI. The PANI-indole copolymers also displayed excellent antituberculosis and antimalarial activities, with the synthesized copolymer showing better outcomes than individual PANI.

3.
RSC Adv ; 13(21): 14594-14613, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37188256

RESUMEN

The study aimed to develop an efficient catalyst, biochar/Fe3O4@SiO2-Ag magnetic nanocomposite, to synthesize bioactive benzylpyrazolyl coumarin derivatives through a one-pot multicomponent reaction. The catalyst was prepared using Ag nanoparticles synthesized with Lawsonia inermis leaf extract and carbon-based biochar obtained through pyrolysis of Eucalyptus globulus bark. The nanocomposite contained a silica-based interlayer, highly dispersed Ag nanoparticles, and a central magnetite core, which responded well to external fields. The biochar/Fe3O4@SiO2-Ag nanocomposite showed excellent catalytic activity and could be easily recovered using an external magnet and reused five times without significant loss of performance. The resulting products were tested for antimicrobial activity and showed significant activity against various microorganisms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA